Ty Carlson BYU ChE Honored Alumnus 2018

- B.S. ChE BYU 2006
- Mission to Hungary Budapest
- Joined Valero 2006
 - Met wife there (Benicia, CA)
 - 3 kids
- Process engineer
 - crude, hydrotreating, hydrogen, hydrocracking, and cogeneration units
- Planning and economics at refinery
- Regional planning engineer (headquarters in San Antonio)
 - focused on optimizing and aligning commercial and operational activities
 - MBA from UT San Antonio
- Planning and Optimization Manager
 - (Wilmington refinery near Long Beach) over the FCC and Alkylation units.

1

Next Week

Monday – Combustion Reactions Wednesday – Exam Review

Exam 1

- Take-home
- Closed book, but one page of notes (one-sided)
- Passed out in class on Wednesday (Sept 29)
- Due Monday in class (9 am, Oct. 4)
- 3-hr time limit (must be consecutive)
- Practice Exam is now on Learning Suite
- TA help session in class on Friday (Oct. 1)

Review

$$n_i = n_{i,0} + \nu_i \xi$$

- What does the subscript "i" represent?
- What does the subscript "0" represent?

$$n_{A,final} = n_{A,initial} + \nu_A \xi$$

 How does this equation relate to the general balance equation?

$$accum = in - out + gen - cons$$

$$out = in + gen - cons$$

- What is v_i ?
- · What about multiple reactions?

Δ

Class 11 Multiple Reactions, Multiple Units

- Conversion & Excess Reactant (Review)
- Extent of Reaction (Review)
- Recommendations & Cautions (repeat)
- Definitions
 - Recycle
 - Purge
- Examples

5

Conversion & Excess Reactant

Definition of conversion

$$X_A = \frac{n_{A,0} - n_A}{n_{A,0}}$$

- n_{A 0} ALWAYS defined based on inlet stream
- Definition of Excess Reactant

$$\%excess = \frac{n_{A,0} - n_{A,stoich}}{n_{A,stoich}}$$

- n_{A,stoich} ALWAYS defined based on inlet stream
 - not based on conversion of limiting reactant
 - Example: if 80% of limiting reactant is converted, the % excess is still computed as if 100% was converted

Extent of Reaction

- Moles reacted for a given reaction (normalized)
- Example: Carbon Tetrachloride Production

$$\begin{array}{ccc} \text{CS}_2 + 3\text{Cl}_2 & \rightarrow \text{S}_2\text{Cl}_2 + \text{CCl}_4 & \xi_1 \\ \text{CS}_2 + \text{S}_2\text{Cl}_2 & \rightarrow 6\text{S} + \text{CCl}_4 & \xi_2 \\ 6\text{S} + 3\text{C} & \rightarrow 3\text{CS}_2 & \xi_3 \end{array}$$

• Write expressions for $n_{CCl4},\,n_{Cl2},\,$ and n_{CS2} in terms of ξ 's

$$\begin{split} n_{CCl4} &= n_{CCl4,0} + \xi_1 + \xi_2 \\ n_{Cl2} &= n_{Cl2,0} - 3\xi_1 \\ n_{CS2} &= n_{CS2,0} - \xi_1 - \xi_2 + 3 \xi_3 \end{split}$$

7

Cautions

- If no reactions occur in the subunit, use the DOF for non-reacting systems
- If reactions occur in the block, you must use the DOF for reacting systems

Definitions - Recycle

- Overall Conversion = $(n_{i1}-n_{i4})/n_{i1}$
- Single Pass Conversion = (n_{i2}-n_{i3})/n_{i2}

- Note that $X_{overall} > X_{single pass}$
- Also, ξ_{single pass} = ξ_{overall}
 ✓ moles reacted are the same

9

Relationship between X and ξ

- Single Pass Conversion (X_{sp}) = $\frac{n_{i2}-n_{i3}}{n_{i2}}$
- $\xi = \frac{n_{i3} n_{i2}}{v_i}$ Reactor

 Recycle stream (n_{i5})
- Therefore, $X_{sp}=\frac{-\xi}{\nu\cdot n_{i2}}$ If you know \mathbf{X}_{sp} and ξ you can get \mathbf{n}_{i2}

Definitions - Purge

- Recycle can result in buildup of unwanted species
- Purge streams are used to release a small portion of the recycle stream
- Purge streams usually have small flow rates compared to main flow rates
- Unwanted species therefore have a path for release
 - Otherwise you get buildup of trace species which may cause deposit buildup or corrosion in tubes

11

Examples

- A. Multiple Species, Elements
- B. Multiple Units

<u>DOF with Element Balances</u> Balances:

- Ca
- Si
- F
- s
- H

Unit	My Answ	#U	ξ's	BE	OE	DOF
Oilit	Olikilowii valiables	<i>#</i> •	53			
Mixer	n _{1,CH4} ,n _{1,Cl2} ,n _{5,CH4}	3	-	2	0	1
Reactor	$n_{3,CH4}, n_{3,HCI}, n_{3,CH3CI}, n_{3,CH2CI2}, n_{3,H2}$	5	3	6	1	1
Condenser	$\begin{array}{c} n_{3,\text{CH4}}, n_{3,\text{HCI}}, n_{3,\text{CH3CI}}, n_{3,\text{CH2CI2}}, n_{3,\text{H2}} \\ n_{4,\text{CH4}}, n_{4,\text{HCI}}, \ n_{4,\text{H2}}, n_{4,\text{CH3CI}}, \\ n_{7,\text{CH3CI}}, n_{7,\text{CH2CI2}} \end{array}$	11	-	5	1	5
Absorber	n _{4,CH4} ,n _{4,HCI} , n _{4,H2} ,n _{4,CH3CI} n _{6 HCI} ,n _{10 H2} ,n _{10 CH4}	7	-	4	0	3
Dist Column	n _{7,CH3CI} ,n _{7,CH2CI2} ,n _{8,CH3CI} ,n _{8,CH2CI2} , n _{9,CH3CI} ,n _{9,CH2CI2}	6	-	2	1	3
Separator	n _{10,H2} ,n _{10,CH4} ,n _{11,H2} ,n _{11,CH4} ,n _{5,CH4}	5	-	2	1	2
Overall	n _{1,CH4} ,n _{1,Cl2} , n _{11,H2} ,n _{11,CH4} ,n _{6,HCl} , n _{8,CH3Cl} ,n _{8,CH2Cl2} ,n _{9,CH3Cl} ,n _{9,CH2Cl2}	9	3	6 CH ₄ ,Cl ₂ , H ₂ ,HCl, CH ₃ Cl, CH ₂ Cl ₂	0	6