

In your ChE job you may use the skills from this class more than from any other ChE class (based on feedback from many students) The biggest help from classes that I have taken came from Ch En 273 because the programming skills for Excel that I learned. Every day, I was recording hundreds of data points including temperatures, pressures, and mixture composition for the project that all had to be analyzed and summarized for the customer. The Excel sheets that I created were later used to reproduce the polymer under similar conditions to compare the numerous combinations and to even prove to the company that a certain mixture was better than another mixture that they were previously leaning towards.

Jennifer Robinson, Internship Report (2018)

		My S	chedule	;	
Time	М	Т	W	Th	F
8:00	Class		Class		Class
	Prep		Prep		Prep
9:00	ChE273	Mahsa A.	ChE273		ChE273
	214 CTB		214 CTB		214 CTB
10:00					
11:00		Devotional		Graduate	
		Marriott Center		Seminar	
12:00			Faculty Mtg		
1:00		College			
		Council			
2:00		Dean's Office			
3:00					
					Danny G.
4:00					

Quantity	Equivalent Values				
Mass	1 kg = 1000 g = 0.001 metric ton = 2.20462 lb _m = 35.27392 oz 1 lb _m = 16 oz = 5×10^{-4} ton = 453.593 g = 0.453593 kg				
Length	$\begin{array}{l} 1 \text{ m} = 100 \text{ cm} = 1000 \text{ mm} = 10^6 \text{ microns } (\mu\text{m}) = 10^{10} \text{ angstroms } (\text{\AA}) \\ = 39.37 \text{ in.} = 3.2808 \text{ ft} = 1.0936 \text{ yd} = 0.0006214 \text{ mile} \\ 1 \text{ ft} = 12 \text{ in.} = 1/3 \text{ yd} = 0.3048 \text{ m} = 30.48 \text{ cm} \end{array}$				
Volume	$1 m^{3} = 1000 L = 10^{6} cm^{3} = 10^{6} mL$ = 35.3145 ft ³ = 220.83 imperial gallons = 264.17 gal = 1056.68 qt 1 ft ³ = 1728 in. ³ = 7.4805 gal = 0.028317 m ³ = 28.317 L = 28,317 cm ³				
Force	$\begin{array}{l} 1 \ N &= 1 \ kg \cdot m/s^2 = 10^5 \ dynes = 10^5 \ g \cdot cm/s^2 = 0.22481 \ lb_f \\ 1 \ lb_f &= 32.174 \ lb_m \cdot ft/s^2 = 4.4482 \ N = 4.4482 \times 10^5 \ dynes \end{array}$				
Pressure	$\begin{array}{l} 1 \mbox{ atm } = \ 1.01325 \times 10^5 \ \mbox{N/m}^2 \ \mbox{(Pa)} = \ 101.325 \ \mbox{kPa} = \ 1.01325 \ \mbox{bar} \\ = \ 1.01325 \times 10^6 \ \mbox{dynes/cm}^2 \\ = \ 760 \ \mbox{mm Hg at } 0^{\circ} \ \mbox{C (torr)} = \ 10.333 \ \mbox{m} \ \mbox{H}_2 \ \mbox{O at } 4^{\circ} \ \mbox{C} \\ = \ 14.696 \ \mbox{lb}_{f} / \mbox{in}^2 \ \mbox{(psi)} = \ 33.9 \ \mbox{ft} \ \mbox{H}_2 \ \mbox{O at } 4^{\circ} \ \mbox{C} \\ = \ 29.921 \ \mbox{in} \ \mbox{Hg at } 0^{\circ} \ \mbox{C} \end{array}$				
Energy	$\begin{array}{l} 1 \ J = 1 \ N \cdot m = 10^7 \ ergs = 10^7 \ dyne \cdot cm \\ = 2.778 \times 10^{-7} \ kW \cdot h = 0.23901 \ cal \\ = 0.7376 \ ft \cdot lb_f = 9.486 \times 10^{-4} \ Btu \end{array}$				
Power	$1 \text{ W} = 1 \text{ J/s} = 0.23901 \text{ cal/s} = 0.7376 \text{ ft} \cdot \text{lb}_{\text{f}}/\text{s} = 9.486 \times 10^{-4} \text{ Btu/s}$				

Units of Force										
System	Mass	Length	Time	Force	9 _c	g	g/g _c			
SI (System International d'unites)	kg	m	S	N	1 kg-m/s²-N	9.807 m/s²	9.807 N/kg			
CGS	g	cm	s	dyne	1 g-cm/s ² -dyne	980.7 cm/s ²	980.7 dyne/			
FPS	lb _m	ft	s	poundal	1 ft-lb _m /s²- poundal	32.17 ft/s ²	32.17 poundal/lb _n			
British (physics)	slug	ft	s	lb _f	1 ft-slug/s²-lb _f	32.17 ft/s ²	32.17 slug/lb			
AES (American Engineering System)	lb _m	ft	s	lb _f	32.17 ft-lb _m /s²-lb _f	32.17 ft/s ²	1 lb _f /lb _m			

HW for next time

- HW 2 (see learning suite)
 - Look at Case Study (see learning suite)