

	М	Tu	W	Th	F
8	3	Parker		Parker	
g)				
10)				
11	1				
noor	Dawson				
1	L	Parker		Parker	
2	Dawson		Dawson		Dawson
3	3				
4	l				
Ę	5				
6	5				

	Chemical ·Engineering·Terms¶	_
Symbol	Quantity¤	
ρ¤	Density (g/cm³)¤	
S.G.¤	Specific gravity ·(p/p_water)□	
∲ ¤	Specific volume (cm ³ /g)¤	
'n¤	Mass flow rate (g/s)¤	
'n¤	Molar flow rate (<u>gmol</u> /s)¤	
α	g-mol·vs·lb-mol¤	
V or ν ¤	Volumetric flow rate (m ³ /s)¤	
MW¤	Molecular weight (g/gmol)¤	
XAo	Mass fraction of species A (other definitions as well) (<u>massa/mass_{mix})^a</u>	
<u>X</u> A ^{ID}	$Mole \cdot fraction \cdot of \cdot species \cdot A \cdot (other \cdot definitions \cdot as \cdot well) \cdot (\underline{mol_{\mathbb{A}}} / \underline{mol_{mix}})^{\Box}$	
<u>₩</u> ¤	Mixture molecular weight (g/gmol)¤	
¤	Using a basis¤	
C _A ¤	Molar concentration (mol _A /cm ³); also called molarity¤	
CAR	Mass concentration $(g_A/cm^3);$ also called partial density $\rho_A{}^{\alpha}$	
T¤	Temperature scales (°C, K, °F, °R)¤	
¶	JJ	

	Con	version	from N	lole to I	Mass Fi	raction	
1. Ass of 1	ume a basis 00 gmols →	2. Calculate of moles c species	number √f each	3. Find MW's	3 4. Ca of d 5. Nc ma	Iculate mass each species	
	Compound	y _i (mole fraction)	n _i (mol)	M _i (g/mol)	m _i (g)	x _i (mass fraction)	
	CO ₂	0.20					
	CH ₄	0.50					
	C ₂ H ₆	0.20					
	H ₂ 0	0.10					
		1.00					

1. Ass of 1	Conv ume a basis 00 gmols	2. Calculate of moles of species	from M	3. Find MW's	Mass Fi	alculate mass each species
	Compound	y _i (mole fraction)	n _i (mol)	M _i (g/mol)	ma m _i (g)	x _i (mass fraction)
	CO ₂	0.20	20			
	CH ₄	0.50	50			
	C_2H_6	0.20	20			
	H ₂ 0	0.10	10			
	Total	1.00	100			

1. Ass		2. Calculate	from N	3. Find MW's	Mass Fr	caction
0, 1		species			5. No ma	rmalize to find iss fractions
	Compound	y _i (mole fraction)	n _i (mol)	M _i (g/mol)	m _i (g)	x _i (mass fraction)
	CO ₂	0.20	20	44	880	
	CH ₄	0.50	50	16	800	
	C ₂ H ₆	0.20	20	30	600	
	H ₂ 0	0.10	10	18	180	
	Total	1.00	100		2460	

How Do You Convert From Mass Fraction To Mole Fraction?

- Basis: 100 grams
- Compute mass of each species
- Divide by MW_i to get moles_i
- Sum number of moles
- Compute mole fraction

Given y _i	Dry Basis Given y _i on a wet basis, compute y _i on a dry basis								
	С	ompound	y i		<i>M</i> _i (g	g/mol)			
	C	CO ₂	0.015		44				
	C	CH ₄	0.820		16				
	C	C₂H ₆	0.040		30				
	F	I ₂ 0	0.125		18				
As	sume ba	asis of 100 gm	ols of "wet	" gas					
	compo	ound		n,		У і	•		
	CO ₂		1.5		1.5/87.5 = 0.017				
	CH ₄		82.0			82/87.5 = 0.937			
	C ₂ H ₆		4.0			4/87.5 = 0.046			
	H ₂ O		12.5						
	Total		100.0						
	Total (d	lry)		87.5		1.00	00		

Homework Hints

- 3.1 Volume & Density
- 3.2 Archimedes principle
- 3.3 A slurry is a mixture of liquid and fine solids
- 3.4 Non-ideal volume of liquid mixture