

$$\dot{m}_{in,recycle} = \frac{1}{7} \dot{m}_{in,norecycle}$$

$$\dot{m}_{out,recycle} = \frac{1}{7} \dot{m}_{out,no\,recycle}$$

What was the purpose of Problem 25.3?

- Practice the following concepts:
 - Energy balances
 - Mass balances
 - Psychrometric chart
 - Recycle
 - Dry air as a constant quantity in balances

3

Schedule

- Today Heats of Reaction, Heat of Combustion
- Mon Energy Balance with Reaction
 - WARNING on Reading:
 Skip "Heat of Reaction Method" on pages 505-506 (450-451 in 3rd Ed.)
 Skip Examples 9.5-1, 9.5-2, and 9.5-3 (equations are generally wrong except in special circumstances!)
- Wed Practice Energy Balance with Reaction
- Fri Solid fuels
- Mon Adiabatic Flame Temperature
- Wed Transient Balances
- Fri before Thanksgiving Review for Exam 3 & hand out exam
- Exam 3 due on Tuesday, Nov. 22

Δ

Heat Capacity Table

- I have put an <u>Excel spreadsheet</u> on my web page with all of the heat capacity info for the HW
- This is meant to reduce time and prevent errors of typing in numbers

5

Level 3 Competency Exam

- See list of competencies
 - Show how many are from the ChE 273 class
- See booklet
- Also on ChE web page
 - Undergraduate page

Heats of Reaction 1. Definition

- ΔH_r = heat of reaction (kJ/mol or Btu/lbmol or cal/mol)
 - If $\Delta H_r < 0$, exothermic (gives off heat)
 - If $\Delta H_r > 0$, endothermic (needs heat)
- ΔH_r^0 = standard heat of reaction (i.e., at 25°C)
- Heat of reaction <u>always</u> defined by complete reaction (i.e., when X_A = 1) even if the reaction does not go to completion
 - Heat absorbed per mole reacted for a given reactant
- Remember for a single reaction, $\xi = \frac{n_{A,out} n_{A,in}}{v_A} = \frac{n_{A,reacted}}{v_A}$
- Therefore ΔH_{system} = $\xi \Delta H_{\text{r}}$

$$(moles\ reacted) \cdot \left(\frac{kJ\ of\ energy}{moles\ reacted}\right)$$

7

Why are Heats of Reaction Important?

- Exothermic Reactions
 - Must be controlled
 - May lead to runaway conditions
 - See video
- Endothermic Reactions
 - Must be controlled
 - Incomplete conversion if T drops too low

Heats of Reaction 2a. From Heats of Formation

- ΔH_f^0 = heat required to form species at 1 atm, 25°C
 - Tabulated in Table B.1, 2nd to last column
 - Assumes all reactants and products at 25°C
- $\Delta H_r^0 = \sum v_i \Delta H_{f,i}^0$
 - Remember negative sign for reactants
 - Like products minus reactants
 - Usually per mole of one of the reactants (must specify!)
- · Example: Gasification of carbon

9

Heats of Reaction **2b.** Another example

Example: Find the heat of reaction for partial oxidation of propane

```
C_3H_8 + 3O_2(g) \Rightarrow 3CO(g) + H_2(g) + 3H_2O(g)
                        \Delta H_{f,i}^{0} (kJ/mol)
Species
                \underline{\nu}_{i}
C_3H_8
               -1
                       -103.8
               -3
                       0.0
0,
CO
                       -110.52
                                                          See spreadsheet
Η,
                       0.0
H_2O(g)
                       -241.83
\Delta H_{r}^{0} = (3)*(-110.52) + (1)*(0) + (3)*(-241.83) + (-1)*(-103.8) + (-3)*(0.0) = -953.25 \text{ kJ/mol}
           СО
                                                                                  Exothermic!
```

Note that this Heat of Reaction is per mole of C_3H_8 reacted (not per mole of O_2)!

Heats of Reaction 3. Path Independent

•
$$C(s) + O_2 \Rightarrow CO_2$$

$$\Delta H_r^0 = -393.51 \text{ kJ/mol}$$

•
$$C(s) + \frac{1}{2}O_2 \Rightarrow CO$$

$$\Delta H_{r}^{0} = -110.52 \text{ kJ/mol}$$

•
$$CO + \frac{1}{2}O_2 \Rightarrow CO_2$$

•
$$CO + \frac{1}{2}O_2 \Rightarrow CO_2$$
 $\Delta H_r^0 = -282.99 \text{ kJ/mol}$
• $C(s) + O_2 \Rightarrow CO_2$ $\Delta H_r^0 = -393.51 \text{ kJ/mol}$

•
$$C(s) + O_2 \Rightarrow CO_2$$

$$\Delta H_r^0 = -393.51 \text{ kJ/mol}$$

- · Hess's Law:
 - Add or subtract reactions to get correct ΔH_r

11

Heats of Reaction

4. Heat of Combustion

- ΔH_c^0 = heat of combustion at 1 atm, 25°C
 - Tabulated in Table B.1, Last last column
 - Assumes all reactants and products at 25°C
 - All $C \Rightarrow CO_2(g)$
 - All $H \Rightarrow H_2O$ (liq) (for "high heating value")
 - All $S \Rightarrow SO_2(g)$
 - All $N \Rightarrow N_2$ (g)
- Heating value = $-\Delta H_c^0$
- Same as heat of reaction, assuming the species above
- Example: $NH_3 + \frac{3}{4} O_2 \Rightarrow \frac{3}{2} H_2O(liq) + \frac{1}{2} N_2$ ΔH_{fi}^{0} (kJ/mol): -46.19 0.0 -285.84

$$\Delta H_r = (3/2)*(-285.84) - (-46.19) = -382.57 \text{ kJ/mol}$$
 (same as ΔH_c^0 in Table B.1)

Heats of Reaction 5. ΔH_r at Different Temperatures

Review:

• How do you find \widehat{H} at different temperatures?

$$\widehat{H} = \Delta \widehat{H}_f^0 + \int_{25^{\circ}\text{C}}^T \widehat{C}_p dT$$

- Suppose $\hat{C}_{p,methane} \approx 0.079 \frac{kJ}{mol \, ^{\circ} \text{C}}$ and $\Delta \widehat{H}_{f,methane}^0 = -74.85 \frac{kJ}{mol}$
- Find $\widehat{H}_{methane}$ at 400°C
- \widehat{H} = -74.85 $\frac{kJ}{mol}$ + $\int_{25^{\circ}C}^{400^{\circ}C} 0.079 \frac{kJ}{mol \circ C} dT$ = -74.85 + 0.079 * (400 - 25) = -45.22 $\frac{kJ}{\text{mol CH}_4}$

13

Multiple Species

• Calculate the energy required to raise a mixture from 25°C to 400°C .

Species	Gram-moles
O ₂	0.05
CO ₂	1.0
H ₂ O	0.3

$$\Delta H = \sum n_i \Delta H_i$$

$$\Delta H_{O2} = \int_{25}^{400} C_{p,O_2} dT$$

$$= a_{O_2} (400 - 25) + \frac{b_{O_2}}{2} (400^2 - 25^2) + \frac{c_{O_2}}{3} (400^3 - 25^3)$$

$$+ \frac{d_{O_2}}{4} (400^4 - 25^4)$$

Multiple Species

• Now get $\Delta H = \sum n_i \Delta H_i$

$$0.05 * \left(a_{O_2}(400 - 25) + \frac{b_{O_2}}{2}(400^2 - 25^2) + \frac{c_{O_2}}{3}(400^3 - 25^3) + \frac{d_{O_2}}{4}(400^4 - 25^4) \right)$$

$$1.0 * \left(a_{CO_2}(400 - 25) + \frac{b_{CO_2}}{2}(400^2 - 25^2) + \frac{c_{CO_2}}{3}(400^3 - 25^3) + \frac{d_{CO_2}}{4}(400^4 - 25^4) \right)$$

$$0.30 * \left(a_{H_2O}(400 - 25) + \frac{b_{H_2O}}{2}(400^2 - 25^2) + \frac{c_{H_2O}}{3}(400^3 - 25^3) + \frac{d_{H_2O}}{4}(400^4 - 25^4) \right)$$

This is a lot of programming or punching buttons on a calculator!

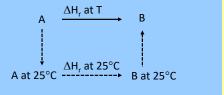
15

Shortcut (Combine coefficients)

$$\begin{split} &0.05*\left(a_{O_2}(400-25)+\frac{b_{O_2}}{2}(400^2-25^2)+\frac{c_{O_2}}{3}(400^3-25^3)+\frac{d_{O_2}}{4}(400^4-25^4)\right)\\ &1.0*\left(a_{CO_2}(400-25)+\frac{b_{CO_2}}{2}(400^2-25^2)+\frac{c_{CO_2}}{3}(400^3-25^3)+\frac{d_{CO_2}}{4}(400^4-25^4)\right)\\ &0.30*\left(a_{H_2O}(400-25)+\frac{b_{H_2O}}{2}(400^2-25^2)+\frac{c_{H_2O}}{3}(400^3-25^3)+\frac{d_{H_2O}}{4}(400^4-25^4)\right) \end{split}$$

Define new variables:

$$a' = \sum n_i a_i$$
 $b' = \sum n_i b_i$ $c' = \sum n_i c_i$ $d' = \sum n_i d_i$


Now ΔH becomes:

$$\Delta H = a'(400 - 25) + \frac{b'}{2}(400^2 - 25^2) + \frac{c'}{3}(400^3 - 25^3) + \frac{d'}{4}(400^4 - 25^4)$$

If this approach is confusing, don't use this shortcut method

Two Methods to Find ΔH_{rxn} as f(T)

Path Method (A→B)

$$\Delta H_T = \int_T^{25 C} C_{p,A} dT + \Delta H_{r,25 C} + \int_{25}^T C_{p,B} dT \qquad \Delta \widehat{H}_{rxn} = \left(\sum n_i \widehat{H}_i\right)_{out} - \left(\sum n_i \widehat{H}_i\right)_{in}$$

Heat of Formation

$$\widehat{H}_i = \Delta \widehat{H}_{f,i}^0 + \int_{25}^T C_{p,i} \, dT$$

$$\Delta \widehat{H}_{rxn} = \sum
u_i \widehat{H}_i$$
 or

$$\Delta \hat{H}_{rxn} = \left(\sum n_i \hat{H}_i\right)_{out} - \left(\sum n_i \hat{H}_i\right)_{in}$$

17

Example

- $CO + \frac{1}{2}O_2 \rightarrow CO_2$
- Find the heat of reaction at 1200°C
 - A. Path method
 - B. H_{out} H_{in} (ΔH_f^0 approach)

Need volunteer for spreadsheet

HW

- Practice finding heat of reaction
- Find the heat of reaction at elevated temperature
 - A. Path method
 - B. H_{out} H_{in} (ΔH_f^0 approach)
- Work the first problem on the Case Study with your team