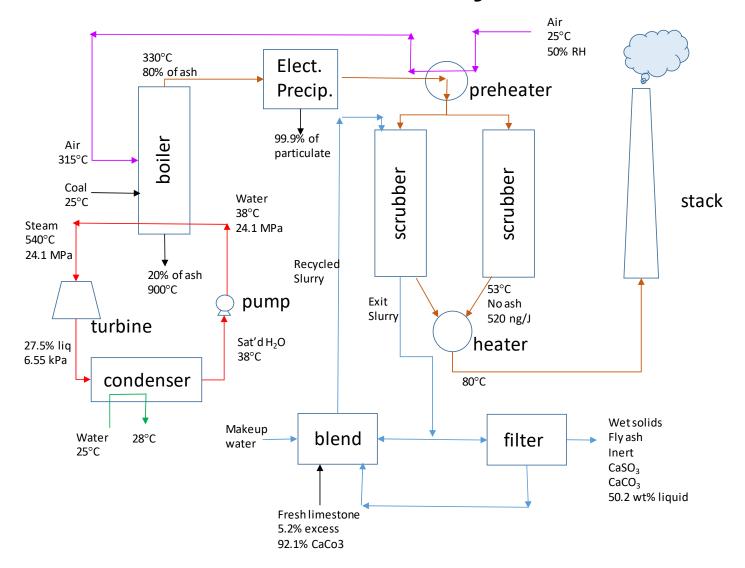
Student Innovator of the Year Competition

Dear Professor,

The Student Innovator of the Year (SIOY) competition is on!

Each year students from across campus have an opportunity to receive \$400 of funding to prototype and develop a project/idea that they have and then compete for part of \$50,000 in prize money. All students and their ideas/projects across the spectrum of disciplines are welcome to compete.


Would you be able to show this one minute video to the students in your class this week, or allow us to do a 30-second announcement about the competition so we can encourage some innovation from our student body whilst they may be home more than usual dreaming up big things?

Business

Professional Program Application

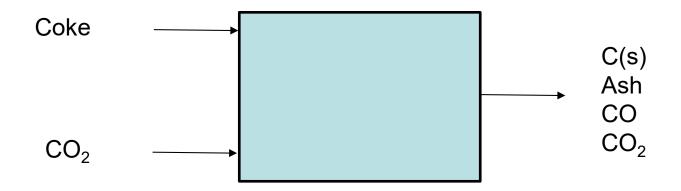
- Due Sunday!
- How many of you have this completed?
- Professor do not have enough time to do this all today

Case Study Problem #1

Recycled Slurry

50 °C 15.2 kg liq/kg inlet gas 1:9 solid/liquid Sat'd CaCO₃ & CaSO₃

Exit Slurry


Sat'd CaCO₃ & CaSO₃ S.G. = 0.988 Solids:

- CaCO₃
- CaSO₃
- Fly ash
- Inerts

Solubilities

 $0.002 \text{ kg CaCO}_3 / 100 \text{ kg H}_2\text{O}$ $0.003 \text{ kg CaSO}_3 / 100 \text{ kg H}_2\text{O}$

Review Prob 27.2

Given Q, find ξ

$$Q = \left(\sum n_i \widehat{H}_i\right)_{out} - \left(\sum n_i \widehat{H}_i\right)_{in}$$

$$n_i = n_{i,0} + \nu_i \xi$$

Mixed units (lb_m, lb-moles, J, g-moles)

Goals Today

- 1. Questions on Energy Balances
- 2. Look at HW problems

Review of Enthalpy

Term	Units	Explanation
Н		
Н		
\widehat{H}		
ΔH_f^{0}		
ΔH_{rxn}		
ΔH_{rxn} ΔH_c		
ΔH_{vap} ΔH_{m}		
ΔH_m		

Review of Enthalpy

Term	Units	Explanation
Н	J	
Н	J/s	
Ĥ	J/mol or kJ/kg	
ΔH_f^{0}	kJ/mol	
ΔH_{rxn}	kJ/mol	
ΔH_c	kJ/mol	
ΔH_{vap}	kJ/mol	
ΔH_m	kJ/mol	

Review of Enthalpy

Term	Units	Explanation
Н	J	Total enthalpy (H = U + PV)
Н	J/s	Enthalpy per time
\widehat{H}	J/mol or kJ/kg	Specific enthalpy (i.e., enthalpy per unit mass or mole)
$\Delta {H_f}^0$	kJ/mol	Standard heat of formation (⁰ means at 1 atm, 25°C)
ΔH_{rxn}	kJ/mol	Heat of reaction
ΔH_c	kJ/mol	Heat of combustion (in book, this corresponds to the high heating value with liquid H ₂ O as a product) (0 means reactants and products at 1 atm, 25°C)
ΔH_{vap}	kJ/mol	Heat of vaporization (liquid ⇒ vapor) (Value in Table B.1 at boiling temperature, 1 atm)
ΔH_m	kJ/mol	Heat of melting (Value in Table B.1 at melting temperature, 1 atm)

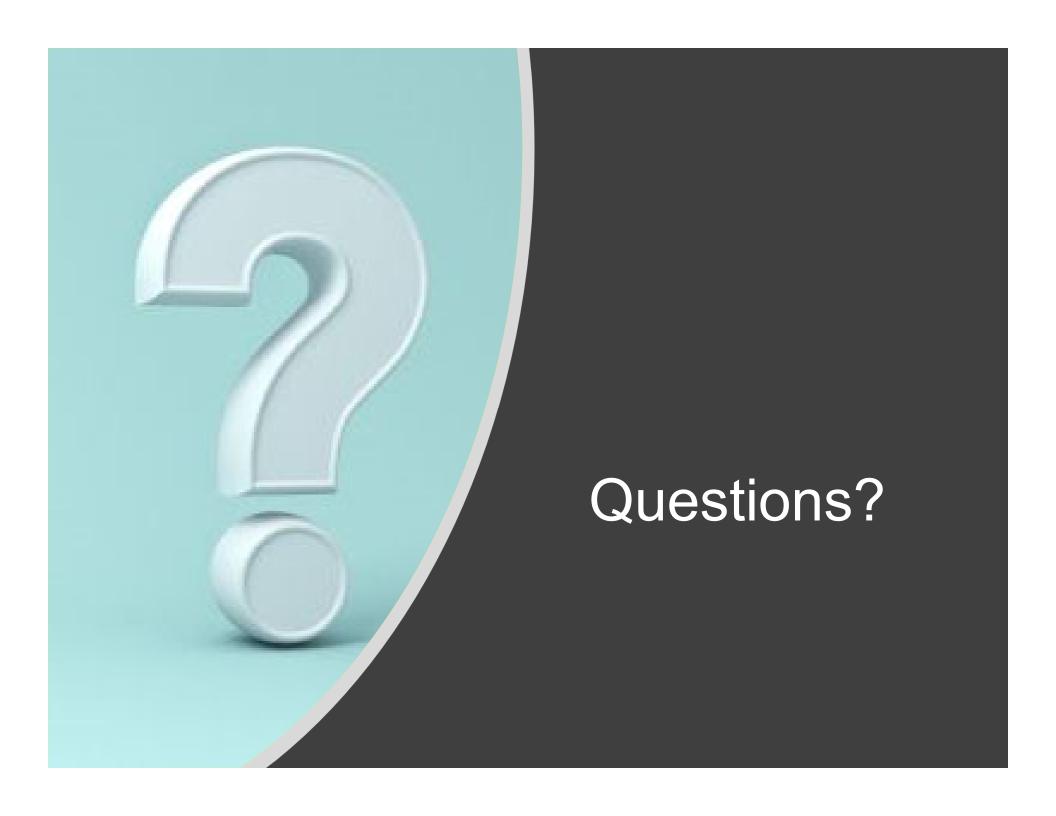
Review of Energy Balances

$$\Delta U + \Delta E_k + \Delta E_p = Q + W$$

$$\Delta \dot{H} + \Delta \dot{E}_K + \Delta \dot{E}_P = \dot{Q} + \dot{W}_S$$

$$\Delta \dot{H} = \left(\sum \dot{m}_j \hat{H}_j\right)_{out} - \left(\sum \dot{m}_j \hat{H}_j\right)_{in}$$

$$\hat{H}_i = \Delta \hat{H}_{f,i}^o + \int_{25^{\circ}C}^{T_2} C_{P,i} dT$$


$$\frac{\Delta P}{\rho} + \frac{\Delta (u^2)}{2} + g\Delta z + \hat{F} = + \frac{W_S}{\dot{m}}$$

$$C_p = C_V + R$$

$$d\hat{H} = C_P dT + \hat{V} dP$$

Path Method

In-Out Table Method

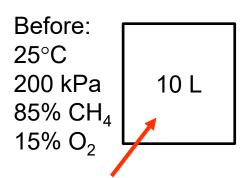
Problem 9.25 (3rd Ed.)

A gas mixture containing 85 mole% methane and the balance oxygen is to be charged into an evacuated well-insulated 10-liter reaction vessel at 25°C and 200 kPa. An electrical coil in the reactor, which delivers heat at a rate of 100 watts, will be turned on for 85 seconds and then turned off. Formaldehyde will be produced in the reaction

$$CH_4 + O_2 \rightarrow HCHO + H_2O$$

The reaction products will be cooled and discharged from the reactor.

Calculate the maximum pressure that the reactor is likely to have to withstand, assuming that there are no side reactions. If you were ordering the reactor, why would you specify an even greater pressure in your order? (Give several reasons.)


Problem 9.25 (3rd Ed.)

$$CH_4 + O_2 \rightarrow HCHO + H_2O$$

Closed system energy balance

$$\Delta U + \Delta E_k + \Delta E_p = Q + W$$

 $\Delta U_f^0 = \Delta H_f^0 - RT$, where T = 298 K

Q=100 W for 85 s

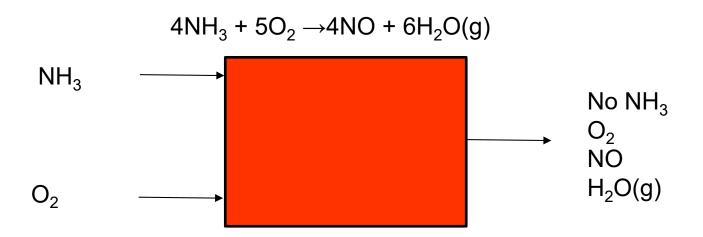
Before:

T=?

P=?

All O₂ reacts

$$\widehat{U} = \Delta U_f^0 + \int_{25^{\circ}C}^T C_{\nu} dT = \Delta U_f^0 + \int_{25^{\circ}C}^T (C_p - R) dT$$

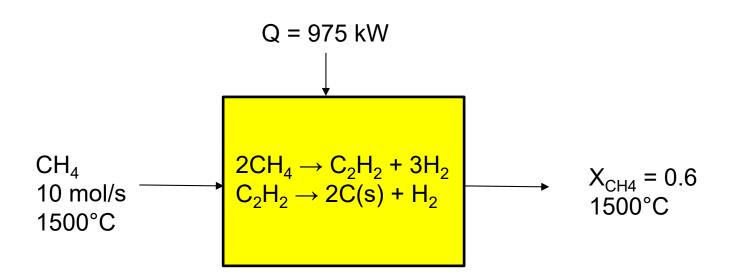

$$C_V = (a - R) + bT + cT^2 + dT^3 = a^* + bT + cT^2 + dT^3$$

Strategy:

- 1. Find n_{initial}
- 2. Find n_{i,final} for each species
- 3. Guess T_{final}
- 4. Calculate Q from energy balance
- 5. $Q_{heater} = Q_{energy \ balance}$?
- 6. Find $P_{final} = nRT/V$

See Spreadsheet

Preview Prob 28.1


Find ξ from NH₃ balance

Find n_i's from $n_i = n_{i,0} + \nu_i \xi$

Given Q=0, find T_{out} using solver

$$Q = 0 = \left(\sum_{i} n_{i} \widehat{H}_{i}\right)_{out} - \left(\sum_{i} n_{i} \widehat{H}_{i}\right)_{in}$$

Preview Prob 28.2

Constant C_p's given

Find ξ_1 from CH_4 balance

Find n_i equations from $n_i = n_{i,0} + \nu_{i,1}\xi_1 + \nu_{i,2}\xi_2$

Given $Q=\Delta H$, find ξ_2 using solver

$$Q = \left(\sum n_i \widehat{H}_i\right)_{out} - \left(\sum n_i \widehat{H}_i\right)_{in}$$