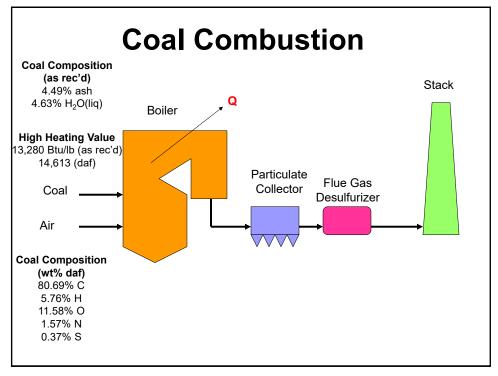
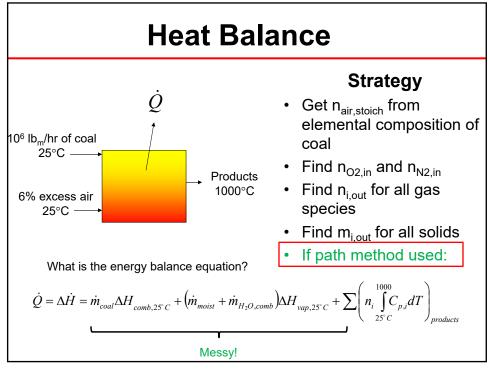


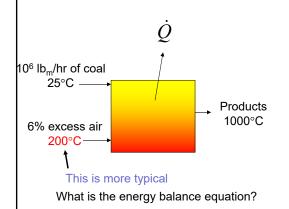
Δ




TA	ABLE I Classification of Coals by Rank							
		Fixed carbon limits (%) (dry, mineral- matter-free basis)		Volatile matter limits (%) (dry, mineral- matter-free basis)		Calorific value limits (Btu/lb) (moist mineral-matter- free basis)		
	Class Group	≥	<	>	≥	≽	<	Agglomerating character
I.	Anthracitic							
	1. Meta-anthracite	98	_		2		-)	
	2. Anthracite	92	98	2	8	- i - i - i	_ }	nonagglomerating
	3. Semianthracite	86	92	8	14	_	_ /	
	Bituminous							
	1. Low volatile bituminous coal	78	86	14	22	_	-)	
	2. Medium volatile bituminous coal	69	78	22	31	_	-	
	3. High volatile A bituminous coal	_	69	31	_	14,000	- }	commonly agglomerating
	4. High volatile B bituminous coal	_	_	_	_	13,000	14,000	
	5. High volatile C bituminous coal	_	_	_	_	11,500	13,000	
						10,500	11,500	agglomerating
III.	Subbituminous						,	
	Subbituminous A coal	-	-	-		10,500	11,500	
	2. Subbituminous B coal	-	_	_	_	9,500	10,500	
** *	3. Subbituminous C coal	The second	-	_	_	8,300	9,500	nonagglomerating
IV.	Lignitic							
	1. Lignite A		-	_	-	6,300	8,300	
	2. Lignite B	COLUMN TO	-		-	_	6,300	

Terminology

- High heating value
 - Calculated using H₂O (liq) as product
- Low heating value
 - Calculated using H₂O (gas) as product
- Heating value = -∆H_c
 - i.e., heating value is positive, but heat of reaction is negative
 - Table B.1 lists the high heating value
 - Actually ΔH_c corresponding to the high heating value


9

See Spreadsheet Example

Heat Balance with Preheated Air

Strategy

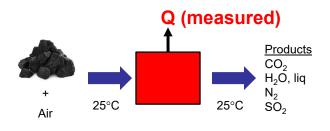
- Get n_{air,stoich} from elemental composition of coal
- Find n_{O2,in} and n_{N2,in}
- Find n_{i,out} for all gas species
- Find m_{i.out} for all solids
- What is the energy balance equation?

 Use ΔH_f^o method Recommended! $\dot{Q} = \Delta \dot{H} = \left(\sum \dot{n_i} \hat{H_i}\right)_{gas,out} + \left(\sum \dot{m_i} \hat{H_i}\right)_{solid \& liquids,out} \left(\sum \dot{n_i} \hat{H_i}\right)_{in} \left(\sum \dot{m_i} \hat{H_i}\right)_{solid \& liquids,in}$

Need heat of formation of coal!

13

Calculation of ∆H_f⁰ for Coal


- Given:
 - Elemental composition
 - Heating Value (Btu/lb_m) ... Change to kJ/kg
 - Basis: 1.00 kg of dry, ash-free coal (daf)
- Calculate:
 - Mass of each element (C, H, O, N, S)
 - Moles of each element
 - O₂ requirement to burn each element

$$\begin{array}{ll} \text{C + O}_2 \Rightarrow \text{CO}_2 & \text{O in coal decreases O}_2 \text{ requirement from air} \\ \text{H + $^{1}\!\!/_4$ O}_2 \Rightarrow {}^{1}\!\!/_2\text{H}_2\text{O (liq)*} & \text{N in coal goes to N}_2 \\ \text{S + O}_2 \Rightarrow \text{SO}_2 & \end{array}$$

- Moles of each product (CO₂, H₂O, SO₂, O₂, N₂)

*H₂O product is liquid if the high heating value is specified!

Calculation of ΔH_f^0 for Coal

15

Calculation of ∆H_f⁰ for Coal

Energy Balance

$$Q = H_{products} - H_{reactants} = -Heating \ Value$$
 $H_{products} = \sum (n_i \widehat{H}_i)_{products}$ $H_{reactants} = \sum (n_i \widehat{H}_i)_{reactants}$ $\widehat{H}_{coal} \neq \Delta H_{f,coal}^0 + \int_{2\pi^*C}^T C_{p,coal} dT$

unknown

- For heat of formation calculation, reactants and products are at 25°C!
 - Only need $\Delta H_{f,products}$, not C_p 's

Calculation of ∆H_f⁰ for Coal (cont.)

• Since we are computing everything at 25°C,

$$\widehat{H}_{i} = \Delta H_{f,i}^{0} + \int_{25^{\circ}C}^{25^{\circ}C} C_{p,coal} dT$$

$$H_{products} = \sum (n_{i} \Delta H_{f,i}^{0})_{products}$$

$$H_{reactants} = \sum (n_{i} \Delta H_{f,i}^{0})_{reactants}$$

- And since the gaseous reactant is air, $\Delta H_{f,air}^0$ =0
- Therefore:

-Heating Value =
$$\sum (n_i \Delta H_{f,i}^0)_{prod} - m_{coal} \Delta H_{f,i}^0$$

17

Answer to Special Problem 29.1

$$\Delta H_{f,coal}^0 = -3134 \frac{kJ}{kg \ of \ daf \ coal}$$

You will need to know how to get a heat of formation for coal when you do the case study!

Homework: Problem 29.2 Draw schematic Air 100 C 1.0 atm Q_1 Q_2 Basis: 1 gmol of methanol Methanol (liq) 25 C 1 atm Methanol (vap) 300 C 1.1 atm Evaporator 100 C 1.0 atm 1.1 atm Mole fractions (dry basis): Catalytic $y_{CO2} = 0.048$ $y_{O2} = 0.143$ $y_{N2} = 0.809$ Combustor (a) Find % excess air and dew point temperature of the product gas (b) Find ${\rm Q}_1$ and ${\rm Q}_2$ Strategy: (a) 1 mol methanol means 1 mol ${\rm CO_2}$ produced, so find ${\rm n_{dry}}$ (b) Find n_{O2} and n_{N2} in outlet stream from y_i 's and n_{dry} (c) n_{N2} is same in inlet air, so find n_{O2} and hence % excess air (d) Find Q's from energy balances