

Notes on DOF Analysis

- My method is slightly different than in the book or on the web
 - The authors like to write out more equations and unknowns (like S.G. to convert mass to volume)
- The important thing is to get the DOF correct
 - TA's will be understanding on grades
 - I will be understanding on exams

Problem 4.32 (4.22 in 3rd Edition)

- *4.22. Gas streams containing hydrogen and nitrogen in different proportions are produced on request by blending gases from two feed tanks: Tank A (hydrogen mole fraction = x_A) and Tank B (hydrogen mole fraction = x_B). The requests specify the desired hydrogen mole fraction, x_P , and *mass* flow rate of the product stream, $\dot{m}_P(\text{kg/h})$.
 - (a) Suppose the feed tank compositions are $x_A = 0.10 \text{ mol } H_2/\text{mol}$ and $x_B = 0.50 \text{ mol } H_2/\text{mol}$, and the desired blend-stream mole fraction and mass flow rate are $x_P = 0.20 \text{ mol } H_2/\text{mol}$ and $\dot{m}_P = 100 \text{ kg/h}$. Draw and label a flowchart and calculate the required *molar* flow rates of the feed mixtures, $\dot{n}_A(\text{kmol/h})$ and $\dot{m}_B(\text{kmol/h})$.
 - (b) Derive a series of formulas for \dot{n}_A and \dot{n}_B in terms of x_A , x_B , x_P , and \dot{m}_P . Test them using the values in part (a).
 - (c) Write a spreadsheet that has column headings x_A , x_B , x_P , \dot{m}_P , \dot{n}_A , and \dot{n}_B . The spreadsheet should calculate entries in the last two columns corresponding to data in the first four. In the first six data rows of the spreadsheet, do the calculations for $x_A = 0.10$, $x_B = 0.50$, and $x_P = 0.10$, 0.20, 0.30, 0.40, 0.50, and 0.60, all for $\dot{m}_P = 100$ kg/h. Then in the next six rows repeat the calculations for the same values of x_A , x_B , and x_P for $\dot{m}_P = 250$ kg/h. Explain any of your results that appear strange or impossible.
 - (d) Enter the formulas of part (b) into an equation-solving program. Run the program to determine \dot{n}_A and \dot{n}_B for the 12 sets of input variable values given in part (c) and explain any physically impossible results.

