Strategy to Finish Ch. 4

Mon (today) – 4.6

Chemical Reaction Terminology

Wed (9/22) - 4.7

Balances on Process with Reactions, including DOF

Fri (9/24) - 4.7

Practice balances w/reactions

Mon (9/27) - 4.8 **Combustion**

1

Word to the Wise

- Balances with chemical reaction are:
 - Easy!
 - Most missed competency on the L3 exam!

Stoichiometric

(I shouldn't have to review this)

$$N_2 + 3H_2 \rightarrow 2NH_3$$

- Stoichiometric coefficients (v_i)
 - Found in stoichiometric equation (numbers in front of species that balance the equation)
 - Negative for reactants, positive for products
 - $-v_{N2} = -1$, $v_{H2} = -3$, $v_{NH3} = 2$
- Stoichiometric ratio
 - Molar ratio in stoichiometric equation
 - The stoichiometric ratio here is $N_2/H_2 = 1:3$
 - If we actually have a system that has a 1:3 proportion, then we say it is in stoichiometric proportion

3

Non-Stoichiometric

$$N_2 + 3H_2 \rightarrow 2NH_3$$

- Occurs quite a bit!
- Limiting reactant whichever reactant will be consumed first!
 - If we start with 1 mole N₂, 2 moles H₂, then H₂ is the limiting reactant
 - If the 2 moles of H₂ are consumed, there will still be N₂ left!
- Excess reactant whichever reactant would be left over after consuming the limiting reactant
 - $-% \left(1\right) =0$ In the example above, N_{2} is the excess reactant

More Terms

 $(N_2 + 3H_2 \rightarrow 2NH_3)$

Stoichiometric Requirement

- Given x number of moles of one reactant, how many moles of the other reactant(s) are needed in stoichiometric proportion?
 - Given 2 moles of N₂, what is the stoichiometric requirement of H₂ to form NH₃? (6 moles)

- There will be 1 mole of H₂ left after complete reaction
- % excess = $(n_{i,0} n_{i, \text{ stoich}})/n_{i, \text{ stoich}}$
- = (7-6)/6 in this case = 1/6, or 16.7% excess H₂

5

Fractional Conversion

- f_i in our text, X_i in most others
 - Relative amount of reactant converted= n_{reacted}/n_{fed}

-
$$f_i$$
 (or X_i) = $\frac{n_{i,0} - n_i}{n_{i,0}}$ = $1 - \frac{n_i}{n_{i,0}}$
also $n_i = n_{i0} (1 - X_i)$

- Start with 3 moles H₂, end with 0.3 moles H₂, then
 - $f_{H2} = (3 0.3)/3 = 0.9$, or 90% conversion

Extent of Reaction

(ξ, pronounced ksee, but spelled xi)

 Moles reacted, normalized to stoichiometric equation (this is the definition if there is only one reaction)

$$n_i = n_{i0} + \xi v_i$$
 or $\xi = (n_i - n_{i0})/v_i$

7

Extent of Reaction

(ξ, pronounced ksee)

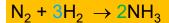
· Moles reacted, normalized to stoichiometric equation

$$n_i = n_{i0} + \xi v_i$$
 or $\xi = (n_i - n_{i0})/v_i$

- note that $\mathbf{v}_{\mathbf{i}}$ is negative for a reactant, positive for a product
- ξ has <u>units of moles</u> (or moles/time for $\dot{\xi}$)*
- One value of ξ for each reaction (not one per species)

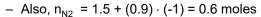
*The author changed his mind on the units for ξ in the 4th Edition!! He gave units of moles to v_i in the 4th edition so ξ would be unitless. This makes no sense! In my class, ξ has units of moles.

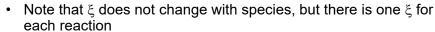
Huh? Please give an example!


Extent of Reaction

OK!

Example


Example



- Start with 3 moles H₂ and 1.5 moles N₂
- 0.3 moles of H₂ are left after rxn (measured)

$$-\xi = (n_i - n_{i0})/v_i = (0.3 - 3)/(-3) = 2.7/3 = 0.9$$
 moles

- So
$$n_{NH3} = n_{i0} + \xi v_i = 0 + (0.9) \cdot (2) = 1.8$$
 moles

$$\xi = \frac{n_{H_2} - n_{H_2,0}}{v_{H_2}} = \frac{n_{N_2} - n_{N_2,0}}{v_{N_2}} = \frac{n_{NH_3} - n_{NH_3,0}}{v_{NH_3}}$$

 In other words, the extent of reaction is a normalized amount of stuff reacting with units of moles

Q

Another Way to Look at ξ

Accum = In - Out + Gen - Cons

- The ξ is the normalized generation term
 - i.e., $(0=n_{i,in}-n_{i,out}+\xi*\nu_i)$, at least for a product
 - Units of mols or mols/time $(\dot{\xi})$
 - If accum = 0, then

$$0 = n_{i,in} - n_{i,out} + \xi * \nu_i$$

$$\xi = \frac{n_{i,out} - n_{i,in}}{\nu_i}, \text{ or }$$

$$n_{i,out} = n_{i,in} + \xi * \nu_i$$

Practice

$$C_3H_8 + 7/2 O_2 \rightarrow 3 CO + 4 H_2O$$

- Start with 2 moles propane, 10 moles O₂
- Limiting reactant: propane
- %Excess of excess reactant:

$$(10-7)/7 = 3/7 = 42.8\%$$

If 1.5 moles of propane react,

- Fractional conversion $(f_{C3H8}) = (2-0.5)/2 = 75\%$
- Extent of reaction $(\xi) = (0.5 2)/(-1) = 1.5 \text{ moles}$
- n_{O2} = 10 + (1.5) · (-7/2) = 4.75 moles
- $n_{CO} = 0 + 1.5 \cdot 3 = 4.5 \text{ moles}$
- $n_{H2O} = 0 + 1.5 \cdot 4 = 6.0 \text{ moles}$

Got it!

11

Multiple Reactions

Use ξ 's in mole balance for each species

$$C_2H_6 + 5/2 O_2 \rightarrow 2CO + 3H_2O$$

 $CO + \frac{1}{2} O_2 \rightarrow CO_2$

- There must be a different extent of reaction for each reaction!
 - $-\xi_1$ for reaction 1
 - $-\xi_2$ for reaction 2
- In general, for j reactions (i is for species)

$$n_i = n_{i,0} + \sum_j \nu_{ij} \xi_j$$

Multiple Reactions

Use ξ in mole balance for each species

$$C_2H_6 + 5/2 O_2 \rightarrow 2CO + 3H_2O$$

 $CO + \frac{1}{2} O_2 \rightarrow CO_2$

Cool!

Mole balances

$$n_{C2H6} = n_{C2H6,0} - \xi_1$$

$$n_{O2} = n_{O2,0} - 5/2 \xi_1 - \frac{1}{2} \xi_2$$

$$n_{CO} = n_{CO,0} + 2\xi_1 - \xi_2$$

$$n_{H2O} = n_{H2O,0} + 3 \xi_1$$

$$n_{CO2} = n_{CO2,0} + \xi_2$$

13

Yield & Selectivity

- These both have to do with multiple products, only one of which is most desired
- ★ Yield = (moles of desired product)/ (max possible moles at complete conversion)
- Selectivity = (moles desired product)/ (sum of undesired products)
 - There are lots of ways to define selectivity
 - Often it is where the carbon goes, and we ignore H₂ as a product when calculating selectivity

Practice

$$\begin{aligned} &C_2 H_6 \to C_2 H_4 + H_2 \\ &C_2 H_6 + H_2 \to 2 \text{ CH}_4 \\ &C_2 H_4 + C_2 H_6 \to C_3 H_6 + \text{CH}_4 \end{aligned}$$

Start with 100 moles of C₂H₆

After reaction, we have:

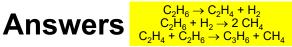
 $65 \text{ mols } C_2H_4$ $15 \text{ mols } C_2H_6$ $60 \text{ mols } H_2$ $25 \text{ mols } CH_4$ $5 \text{ mols } C_3H_6$

- Find yield and selectivity if C₂H₄ is the desired product
- Find ξ_1 , ξ_2 , and ξ_3

15

Answers (fill-in)

```
    Selectivity = 65/(25 + 5) = 2.2
    Set up each mole balance
        n<sub>C2H6</sub> = 15 moles = n<sub>C2H6,0</sub> - ξ<sub>1</sub> - ξ<sub>2</sub> - ξ<sub>3</sub>
        n<sub>C2H4</sub> = 65 moles =
        n<sub>H2</sub> = 60 moles =
        n<sub>C3H6</sub> = 5 mols =


    So....
        ξ<sub>2</sub> =
```

• Yield_{C2H4} = 65/100 = 65%

 $65 \text{ mols } C_2H_4$ $15 \text{ mols } C_2H_6$ $60 \text{ mols } H_2$ $25 \text{ mols } CH_4$ $5 \text{ mols } C_3H_6$

Note:

- Lots of ways to define yield and selectivity
- Usually we use carbon and ignore hydrogen

- Yield_{C2H4} = 65/100 = 65%
- Selectivity = 65/(25 + 5) = 2.2
- Set up each mole balance

```
n_{C2H6} = 15 moles = n_{C2H6,0} - \xi_1 - \xi_2 - \xi_3
     n_{C2H4} = 65 \text{ moles} = 0 + \xi_1 - \xi_3
                                                         Now find ξ's
     n_{H_2} = 60 \text{ moles} = 0 + \xi_1 - \xi_2
     n_{C3H6} = 5 \text{ mols} = 0 + \xi_3
So....
     \xi_3 = 5 \text{ mols}
     \xi_1 = 65 + 5 = 70 \text{ mols} \text{ (from C}_2H_4 \text{ balance)}
```

 $\xi_2 = 70 - 60 = 10 \text{ mols (from H}_2 \text{ balance)}$

65 mols C₂H₄ 15 mols C₂H₆ 60 mols H₂ 25 mols CH₄ 5 mols C₃H₆

- Lots of ways to define yield and selectivity
- · Usually we use carbon and ignore hydrogen

17

Example: $CO_2 + 3 H_2 \rightarrow CH_3OH + H_2O$

Suppose you had 100 mol of CO₂ and 250 mol of H₂, find limiting reactant and % excess of other reactant

- Limiting reactant = H₂
- % Excess CO₂ = (100-250/3)/(250/3) = 20%

Suppose 80 mol of CH₃OH was formed, find ξ and f_{H2}.

- $\xi = (n_{CH3OH} 0)/1 = 80 \text{ mol (also} = n_{H2O})$
- $n_{CO2} = 100 \text{ mol} + (-1)^*(\xi) = 20 \text{ mol}$
- $n_{H_2} = 250 \text{ mol} + (-3)^*(\xi) = 10 \text{ mol}$
- $f_{H2} = X_{H2} = (250 10)/250 = 1 10/250 = 0.96$ (i.e., 96%)

Equilibrium Example

(page 122 in book)

$$\begin{aligned} \text{CO + H}_2\text{O} &= \text{CO}_2 + \text{H}_2, \\ \text{start with 1 mol CO, 2 mol H}_2\text{O} & \frac{\mathcal{Y}_{CO_2}\mathcal{Y}_{H_2}}{\mathcal{Y}_{CO}\mathcal{Y}_{H_2O}} = K_{eq} = 1.0 \end{aligned}$$

$$n_{CO} = 1.0 - \xi$$
 $y_{CO} = (1.0 - \xi) / 3.0$

$$n_{H2O} = 2.0 - \xi$$

$$n_{H2O} = 2.0 - \xi$$

 $n_{CO2} = \xi$
 $y_{H2O} = (2.0 - \xi) / 3.0$

$$y_{CO2} = \xi / 3.0$$
 $y_{H2} = \xi$
 $y_{CO2} = \xi / 3.0$
 $y_{H2} = \xi / 3.0$

$$K_{eq} = 1.0 = \frac{(\xi)(\xi)}{(1 - \xi)(2 - \xi)}$$

Strategy:

- Plug expressions for y_i into equilibrium expression
- Solve for ξ (quadratic eqn. or use solver)
- Calculate final moles of each species from ξ
- Calculate f_{CO}

Chemical Reaction Terms			
Term	Definition	Units	Example
Stoichiometric Equation	Balanced Eqn		$N_2 + 3H_2 => 2NH_3$
Stoichiometric Coefficient (v_i)	Coefficients of stoich ean that balance ean negative for reactants		$v_{N2} = -1$, $v_{H2} = -3$, $v_{NH3} = 2$
Stoichiometric Ratio (S.R.)	Molar ratio in stoichiometric egn		1 N ₂ / 3 H ₂ in example above
Stoichiometric Proportion	If actual molar ratio in system equals the S.R.		If you really have a 1:3 N ₂ /H ₂ molar ratio
Limiting Reactant	Whichever reactant has less than stoichiometric proportion		If 1 mole N ₂ and 2 moles H ₂ , H ₂ is the limiting reactant
Excess Reactant(s)	Reactant(s) with more than stoichiometric proportion		N ₂ in box above
Stoichiometric Requirement	Stoichiometric amount needed	Moles	If you have 1 mole N ₂ , the stoichiometric requirement is 3 moles H ₂
Percent Excess	% above stoich proportion (nj-nj, stoich)/nstoich × 100%	%	If you have 4 moles H ₂ , 1 mole N ₂ (4-3)/3 = 1/3 = 33% excess H ₂
Fractional Conversion (f _i or X _i)	Relative amount of feed reactant converted $\frac{n_{i,0}-n_i}{n_{i,0}}$	fraction (or %)	Start with 3 moles H_2 , end with -3 moles H_2 F = (3 - 0.3)/3 = 0.9, or 90% conversion
Extent of Reaction (ξ)	Amount reacted, normalized to the stoichiometric equation $\xi = \frac{n_i - n_{t,0}}{\nu_i}$	Moles	In box above, $\xi = (0.3 - 3.0)/(-3) = 0.9$ moles
Yield	mole of desired product max possible moles at complete conversion	fraction	See worksheet
Selectivity	moles of desired product \(\overline{\nabla} \) moles undesired products	fraction	