Quiz (use your own paper)

- (8 pts) Name _____
- (1 pt) Write the equation to calculate \widehat{H}_{NH_3} at 350°C.
- (1 pt) Write the transient <u>species mass</u> balance equation.

Exam 3

- Take Home, Today thru Tuesday (Nov 20 Nov 24)
 - Due Tuesday morning (11/24) at 9 am
 - Closed Book, Closed Notes/Homework
 - One 8.5 x 11 paper with notes on both sides
 - I am not supplying equations
 - I am supplying data (C_p, ΔH_f°, etc.)
 - Calculator needed
 - Straight edge needed
- Time limit is 3 hours
 - Some easy problems, some more complicated problems
 - I would like to test what you know, not what you can learn during the test period
- Aligned with competencies!!

Competencies for Exam 3

- Students will be able to set up and solve steady state energy balances (1st law of thermodynamics) for closed and open systems
- Students will understand and be able to apply the concepts of:
 - heat capacity
 - latent heat (phase change)
 - heat of reaction & heat of combustion
 - heat of formation.
- Students will be able to calculate internal energy & enthalpy at system conditions assuming ideal behavior
- Students will be able to set up and solve transient mass balances

In-Class Assignment (with team)

- 1. Take turns explaining review sheet outline
 - Circle any areas where your team is weak
- 2. Go over practice exam
 - Identify competencies for each problem
 - Some are from previous exam period
 - Discuss solution strategy
 - Write down weak areas that should be reviewed with Dr. Fletcher or TAs

Do It!

Competencies on Practice Exam

1.	Heat exchanger	(83%)
2.	Humidity (psychrometric chart)	(75%)
	 Energy & mass balance 	,
	Review of humidity	
3.	Stoichiometry of mixtures	(70%)
4.	Heat of Reaction	(98%)
5.	Energy balances on cycle	(93%)
	Pump & Turbine	
	Heat exchangers	
	P-H diagram	
6.	Adiabatic flame temperature	(90%)
7.	Transient species balance	(85%)
Average score		(83%)

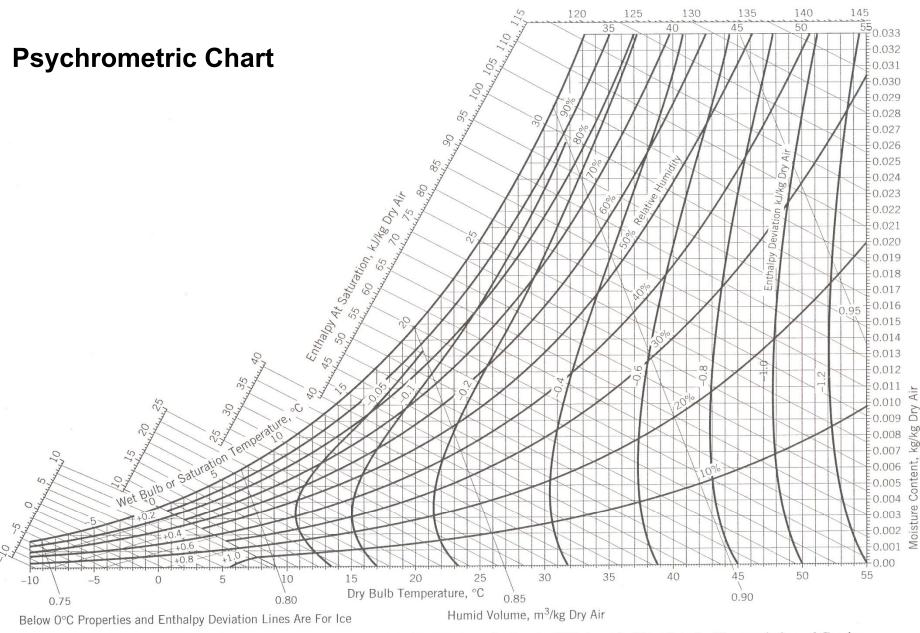
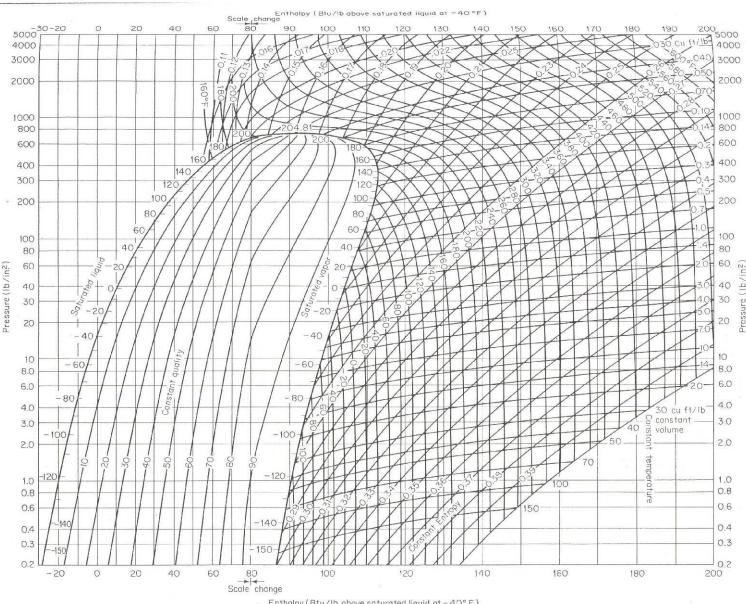



Figure 8.4-1 Psychrometric chart—SI units. Reference states: H_2O (L, $0^{\circ}C$, 1 atm), dry air ($0^{\circ}C$, 1 atm). (Reprinted with permission of Carrier Corporation.)

Enthalpy (Btu/lb above saturated liquid at - 40°F)

Fig. 3-38. Enthalpy-log pressure diagram for Refrigerant 22. Temperature in F., volume in cu. ft./lb., entropy in B.t.u./(lb.)(°R.), quality in weight per cent. Copyright E.I. du Pont de Nemours & Company. Reprinted by permission of the copyright owner. The 1967 Karlsruhe H-log P chart in the metric system covers a range of -90° to 250°C., 0.035 to 121 bars. The Landolt-Börnstein 1967 tables, vol. IVa, give saturation properties from -100° to 96°C., while D'Ans-Lax, "Taschenbuch," 1967, tables at somewhat coarser increments extend from -100° to 70° C. In Vargaftik, "Thermophysical Properties of Substances," Moscow, 1963, tables mostly cover the range -100° to 50°C. The 1967 A.S.H.R.A.E. "Fundamentals" volume contains the above diagram and also an enlarged section for pressures to 300 lb./sq. in. abs. Detailed saturation tables for -155(1)204 and 204.81°F. and superheat tables from -150° to 480°F., 0.2 to 540 lb./sq. in. abs. are contained in du Pont Bulletin T-22, 1964. The 1967 A.S.H.R.A.E. "Fundamentals" volume also contains saturation tables for -150(5)-100(2)204 and 204.81°F.