The worth of souls is great in the sight of God. (D&C 18:10)

Thought: Substitute your first name for "souls"

The worth of <u>Spencer</u> is great in the sight of God.

1

Case Study

- Printed copy of Excel sheet and accompanying explanation of equations
- Upload spreadsheet and other materials to Learning Suite (one per group)
- Make sure your team number and names of team members are on the cover sheet
- Email me your leadership self-evaluation
- Everything due by 5 pm today!

Thank you TAs!!!

Dawson McCrea

Parker LaTour

3

ABET Survey

Please do the student ratings for this class

- Tomorrow is the last day (not available during finals)
- 44% of class has already completed this evaluation
- Student rating will be counted as a HW assignment

Δ

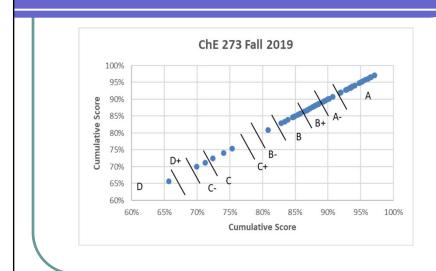
Dean's Lectures

- 2 required
- Indicate this on the front page of the final exam
- Online videos available (see previous emails)
 - On YouTube, search "BYU College of Engineering"

5

Final Exam

- Room Chane: 245 CB (near women's restroom)
- Tuesday, Dec. 13, 7 am
 - Closed Book, Closed Notes/Homework
 - Three 8.5×11 pages with notes on both sides
 - I am not supplying equations
 - I am supplying data (C_p's, ΔH_f°, etc.)
 - Calculator needed
 - Straight edge needed
- Time limit is 3 hours
- Aligned with competencies!!
- Somewhat aligned with what was missed on previous exams



Grades

- High score on final exam gets an A in the class
 - May not be the highest cumulative score in the class!
- Must get 60% on the final exam to avoid penalty on grades (i.e., passing grade on final)!
 - Better to find out now rather than next year if you need to seek a different major

7

Grades from F 2019

Competencies

Students will be able to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.

Students will be able to calculate the work of pumps, turbines, and/or compressors.

Students will be able to design multiple-unit processes.

Students will understand process variables (e.g., P, T, flow rate, conc.) including procedures and equipment for their measurement.

Students will be able to set up and solve steady-state material balances.

Students will be able to set up and solve steady-state energy balances (1st law of thermodynamics) for closed and open systems.

Students will be able to set up and solve transient material balances.

Students will be able to solve simple fluid statics problems.

Students will be able to apply solution thermodynamics fundamentals to solve phase equilibrium problems including bubble point, dew point and flash calculations.

Students will understand and be able to use the extent of reaction in material balances for systems involving chemical reactions.

Students will understand and be able to apply the concepts of heat capacity, latent heat, heat of reaction, heat of combustion, and heat of formation.

Students will be able to read and understand phase diagrams and use these to determine physical phenomena.

Students will understand pure-component, PVT phase behavior including vapor pressure, critical point, freezing line, triple point, etc.

Students will be able to calculate internal energy, enthalpy, and entropy at system conditions assuming ideal behavior.

9

Course Expectations

Students will be able to perform unit conversions.

Students will be able to ensure dimensional consistency when evaluating equations

Students will exhibit critical and creative thinking skills for analysis and evaluation of problems and cause-effect relationships.

Students will be able to make order of magnitude estimates, assess reasonableness of solutions, and select appropriate levels of solution sophistication.

Students will be able to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental, and economic factors.

Students will be able to calculate the work of pumps, turbines, and/or compressors.

Students will be able to design multiple-unit processes.

Students will understand and commit to practice the AIChE code of ethics.

Students will function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment establish goals, plan tasks, and meet objectives.

Students will understand process variables (e.g., P, T, flow rate, conc.) including procedures and equipment for their measurement.

Students will be able to set up and solve steady-state material balances.

Students will be able to set up and solve steady-state energy balances (1st law of thermodynamics) for closed and open systems.

Students will be able to set up and solve transient mass balances.

Students will be able to solve simple fluid statics problems.

students will be able to apply solution thermodynamics fundamentals to solve phase equilibrium problems including bubble point, dew point and flash calculations.

Students will understand and be able to use the extent of reaction in material balances for systems involving chemical reactions.

students will understand and be able to apply the concepts of heat capacity, latent heat, heat of reaction, heat of combustion, and heat of formation.

Students will be able to read and understand phase diagrams and use these to determine physical phenomena.

Students will understand pure-component, PVT phase behavior including vapor pressure, critical point, freezing line, triple point, etc.

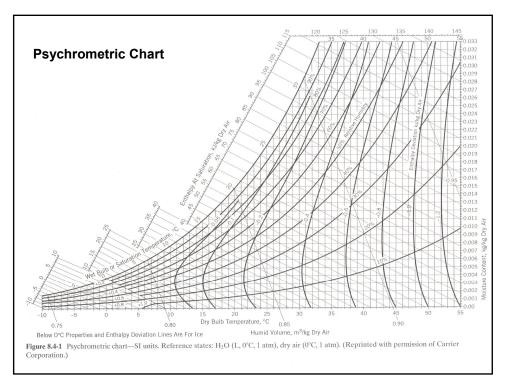
Students will understand how molecular interactions to the behavior of material gives rise to macroscopic properties.

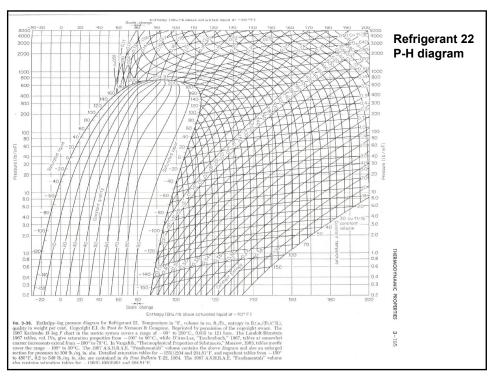
Students will be able to calculate internal energy, enthalpy, and entropy at system conditions assuming ideal behavior

Ways to Prepare for Final Exam

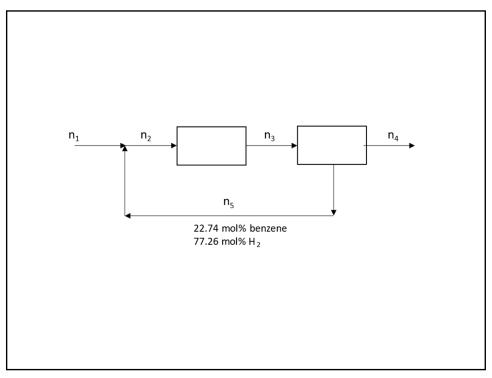
- Get some SLEEP!
- Have a snack handy
- Rework previous exams
 - What did you miss?
- COMPETENCIES!
 - Do you really know this stuff?
 - If not, talk to me or the TAs!!!

11


Terms


- Extent of reaction (ξ)
- Element balances
- Adiabatic, isothermal, isentropic, etc.
- SCFM, SLPM, etc.
- Energy Balances
 (Path method vs. ΔH_f⁰ method)
- ΔH_f^0 vs ΔH_r
- Q, W_s, ΔE_p, ΔE_k
- Mechanical Energy Balance (Bernoulli)
- Transient balances
- Manometers, pressure head
- Gauge vs. absolute pressure

- Vapor-liquid equilibrium
- Degrees of freedom
- Ideal vs. Non-ideal gas
- Kay's rule
- Gauge vs. atmospheric Pressure
- Combustion reactions
- Phase behavior
- Vapor pressures
- Relative humidity (Psychrometric)
- Raoult's Law: Dew pt, Bubble pt, and Flash
- Phase charts (vapor-liquid, liquidliquid, solid-liquid, eutectic)
- Steam tables
- P-H diagram (refrigeration, etc.)


What was missed on the F'21 Final

 Element balance 	80%
 Flash Calculation 	97%
 Rankine Cycle on P-H diagram 	77%
• Low heating value, find ΔH_f^0	80%
 Steam Tables to find phase 	58%
 Adiabatic flame temperature 	78%
 Vapor pressure problem 	72%
 Multi-unit material balance with DOF 	62%

P(bar) (T _{sat.} °C)		Sat'd Water	Sat'd Steam	Temperature 50	(°C) → 75	100	150	200	250	300	350
0.0	Ĥ	_	_	2595	2642	2689	2784	2880	2978	3077	3177
()	0	_	=	2446	2481	2517	2589	2662	2736	2812	2890
0.1	Ĥ	191.8	2584.8	2593	2640	2688	2783	2880	2977	3077	3177
(45.8)	0	191.8 0.00101	2438.0 14.7	2444 14.8	2480 16.0	2516 17.2	2588 19.5	2661 21.8	2736 24.2	2812 26.5	2890 28.7
0.5	Ĥ	340.6	2646.0	209.3	313.9	2683	2780	2878	2979	3076	3177
(81.3)	0	340.6 0.00103	2484.0 3.24	209.2 0.00101	313.9 0.00103	2512 3.41	2586 3.89	2660 4.35	2735 4.83	2811 5.29	2889 5.75
1.0	Ĥ	417.5	2675.4	209.3	314.0	2676	2776	2875	2975	3074	3176
(99.6)	0 V	417.5 0.00104	2506.1 1.69	209.2 0.00101	313.9 0.00103	2507 1.69	2583 1.94	2658 2.17	2734	2811	2889
5.0	Ĥ	640.1	2747.5	209.7	314.3	419.4	632.2	2855	2961	3065	3168
(151.8)	Û	639.6 0.00109	2560.2 0.375	209.2 0.00101	313.8 0.00103	418.8 0.00104	631.6 0.00109	2643 0.425	2724	2803 0.522	2883 0.571
10	Ĥ	762.6	2776.2	210.1	314.7	419.7	632.5	2827	2943	3052	3159
(179.9)	Û	761.5	2582	209.1	313.7	418.7	631.4	2621	2710	2794	2876
20	Ý Ĥ	0.00113 908.6	0.194 2797.2	0.00101	0.00103	0.00104 420.5	0.00109 633.1	0.206 852.6	0.233	0.258 3025	0.282
(212.4)	Û	906.2	2598.2	209.0	313.5	418.4	603.9	850.2	2679	2774	2862
40	Ý Ĥ	0.00118 1087.4	0.09950 2800.3	0.00101 212.7	0.00102 317.1	0.00104 422.0	0.00109 634.3	0.00116 853.4	0.111	0.125 2962	0.139 3095
(250.3)	Û	1082.4	2601.3	208.6	313.0	417.8	630.0	848.8	1080.8	2727	2829
60	Ŷ Ĥ	0.00125	0.04975 2785.0	0.00101 214.4	0.00102 318.7	0.00104 423.5	0.00109 635.6	0.00115 854.2	0.00125 1085.8	0.0588 2885	0.0665 3046
(275.6)	Û	1205.8 0.00132	2590.4 0.0325	208.3 0.00101	312.6 0.00103	417.3 0.00104	629.1 0.00109	847.3 0.00115	1085.8 1078.3 0.00125	2668 0.0361	2792 0.0422
80	Ĥ	1317.1	2759.9	216.1	320.3	425.0	636.8	855.1	1085.8	2787	2990
(295.0)	Û	1306.0 0.00139	2571.7	208.1 0.00101	312.3 0.00102	416.7 0.00104	628.2 0.00109	845.9 0.00115	1075.8 0.00124	2593 0.0243	2750 0.0299
100	Ĥ	1408.0	2727.7	217.8	322.9	426.5	638.1	855.9	1085.8	1343.4	2926
(311.0)	Û	1393.5 0.00145	2547.3 0.0181	207.8 0.00101	311.7 0.00102	416.1 0.00104	627.3 0.00109	844.4 0.00115	1073.4 0.00124	1329.4 0.00140	2702 0.0224
150	Ĥ	1611.0	2615.0	222.1	326.0	430.3	641.3	858.1	1086.2	1338.2	2695
(342.1)	Û	1586.1 0.00166	2459.9 0.0103	207.0 0.00101	310.7 0,00102	414.7 0.00104	625.0 0.00108	841.0 0.00114	1067.7 0.00123	1317.6 0.00138	2523 0.0115
200	Ĥ	1826.5	2418.4	226.4	330.0	434.0	644.5	860.4	1086.7	1334.3	1647.1
(365.7)	Û	1785.7	2300.8 0.005875	206.3 0.00100	309.7 0.00102	413.2 0.00103	622.9 0.00108	837.7 0.00114	1062.2 0.00122	1307.1 0.00136	1613.7 0,00167
$221.2(P_c)$	Ĥ	2108	2108	228.2	331.7	435.7	645.8	861.4	1087.0	1332.8	1635.5
$(374.15)(T_c)$		2037.8 0.00317	2037.8 0.00317	206.0 0.00100	309.2 0.00102	412.8 0.00103	622.0 0.00108	836.3 0.00114	1060.0 0.00122	1302.9	1600.3 0.00163
250	Ĥ	0.00317	0.00317	230.7	334.0	437.8	647.7	862.8	1087.5	1331.1	1625.0
(-)	Û	_	_	205.7	308.7	412.1	620.8	834.4	1057.0	1297.5	1585.0
300	Ŷ	_	_	0.00100 235.0	0.00101	0.00103 441.6	0.00108	0.00113 865.2	0.00122 1088.4	0.00135	0.00160 1609.9
()	Û	_	=	205.0	307.7	410.8	618.7	831.3	1052.1	1288.7	1563.3
	V	-	_	0.0009990	0.00101	0.00103	0.00107	0.00113	0.00121	0.00133	0.00155
500	Ĥ	_		251.9	354.2 304.0	456.8 405.8	664.1 611.0	875.4 819.7	1093.6 1034.3	1323.7 1259.3	1576.3 1504.1
	V	-	-	0.0009911	0.00100	0.00102	0.00106	0.00111	0.00119	0.00129	0.00144
1000 (—)	Ĥ	_	_	293.9 196.5	394.3 295.7	495.1 395.1	698.0 594.4	903.5 795.3	1113.0 999.0	1328.7 1207.1	1550.5 1419.0
` /	v	_	_	0.0009737	0.0009852	0.001000	0.00104	0.00108	0.00114	0.00122	0.00131

