

## Word to the Wise

- Balances with chemical reaction are: – Easy!
  - Most missed competency on the L3 exam!



# Stoichiometric

(I shouldn't have to review this)

#### $N_2 + 3H_2 \rightarrow 2NH_3$

- Stoichiometric coefficients (v<sub>i</sub>)
  - Found in stoichiometric equation (numbers in front of species that balance the equation)
  - Negative for reactants, positive for products
- $-v_{N2} = -1$ ,  $v_{H2} = -3$ ,  $v_{NH3} = 2$
- Stoichiometric ratio
  - Molar ratio in stoichiometric equation
    The stoichiometric ratio here is N<sub>2</sub>/H<sub>2</sub> = 1:3
  - If we actually have a system that has a 1:3 proportion, then we say it is in stoichiometric proportion

# **Non-Stoichiometric**

#### $N_2 + 3H_2 \rightarrow 2NH_3$

- Occurs quite a bit!
- Limiting reactant whichever reactant will be consumed first!
  - If we start with 1 mole N<sub>2</sub>, 2 moles H<sub>2</sub>, then H<sub>2</sub> is the limiting reactant
    - + If the 2 moles of  $\rm H_2$  are consumed, there will still be  $\rm N_2$  left!
- Excess reactant whichever reactant would be left over after consuming the limiting reactant
   In the example above, N<sub>2</sub> is the excess reactant
  - In the example above,  $\mathbf{N}_2$  is the excess reactal

#### More Terms $(N_2 + 3H_2 \rightarrow 2NH_3)$

#### Stoichiometric Requirement

- Given x number of moles of one reactant, how many moles of the other reactant(s) are needed in stoichiometric proportion?
  - Given 2 moles of N<sub>2</sub>, what is the stoichiometric requirement of H<sub>2</sub> to form NH<sub>3</sub>? (6 moles)
- ★• Percent Excess Suppose we have 2

### moles $N_2$ and 7 moles $H_2$

- There will be 1 mole of  $H_2$  left after complete rooting
  - reaction
- % excess =  $(n_{i,0} n_{i, \text{ stoich}})/n_{i, \text{ stoich}}$
- = (7-6)/6 in this case = 1/6, or 16.7% excess  $H_2$

# Fractional Conversion ★

- f<sub>i</sub> in our text, X<sub>i</sub> in most others

   Relative amount of reactant converted
   n<sub>reacted</sub>/n<sub>fed</sub>
  - $\begin{array}{ll} & f_i \;\; (\text{ or } X_i) = (n_{i0} n_i)/n_{i0} = 1 n_i/n_{i0} \\ \bullet \; \text{Start with 3 moles } H_2, \; \text{end with 0.3 moles } H_2, \; \text{then} \\ & f_{H2} = (3 0.3)/3 = 0.9, \; \text{or 90\% conversion} \end{array}$













## **Yield & Selectivity**

- These both have to do with multiple products, only one of which is most desired
- Yield = (moles of desired product)/ (max possible moles at complete conversion)
- Selectivity = (moles desired product)/ (sum of undesired products)
  - There are lots of ways to define selectivity
  - Often it is where the carbon goes, and we ignore  $\rm H_2$  as a product when calculating selectivity

# **Practice** $C_2H_6 \rightarrow C_2H_4 + H_2$

 $\begin{array}{c} \mathsf{C}_2\mathsf{H}_6 + \mathsf{H}_2 \rightarrow 2 \ \mathsf{C}\mathsf{H}_4 \\ \mathsf{C}_2\mathsf{H}_4 + \mathsf{C}_2\mathsf{H}_6 \rightarrow \mathsf{C}_3\mathsf{H}_6 + \mathsf{C}\mathsf{H}_4 \end{array}$ 

#### Start with 100 moles of $C_2H_6$

After reaction, we have:

- 65 mols C<sub>2</sub>H<sub>4</sub>
- 15 mols C<sub>2</sub>H<sub>6</sub> 60 mols H<sub>2</sub>
- 25 mols CH<sub>4</sub>
- 5 mols C<sub>3</sub>H<sub>6</sub>
- + Find yield and selectivity if  $C_2H_4$  is the desired product
- Find  $\xi_1$ ,  $\xi_2$ , and  $\xi_3$





# $\begin{array}{c} \label{eq:example: constraint} \hline \textbf{Example: } \\ \ \textbf{CO}_2 + 3\ \textbf{H}_2 \rightarrow \textbf{CH}_3\textbf{OH} + \textbf{H}_2\textbf{O} \\ \hline \textbf{Suppose you had 100 mol of CO}_2 and 250 mol of \textbf{H}_2, \\ find limiting reactant and % excess of other reactant \\ \cdot \ Limiting reactant = \textbf{H}_2 \\ \cdot \ \% \ \textbf{Excess CO}_2 = (100\text{-}250/3)/(250/3) = 20\% \\ \hline \textbf{Suppose 80 mol of CH}_3\textbf{OH was formed, find } \xi \ and \ \textbf{f}_{\text{H2}}. \\ \cdot \ \xi = (n_{\text{CH3OH}} - 0)/1 = 80 \ \text{mol} \ ( \ \text{also} = n_{\text{H2O}}) \\ \cdot \ n_{\text{CO2}} = 100 \ \text{mol} - (1)^*(\xi) = 20 \ \text{mol} \\ \cdot \ \textbf{h}_{\text{H2}} = 250 \ \text{mol} - (3)^*(\xi) = 10 \ \text{mol} \\ \cdot \ \textbf{f}_{\text{H2}} = \textbf{X}_{\text{H2}} = (250 - 10)/250 = 1 - 10/250 = 0.96 \ (i.e., 96\%) \\ \hline \end{array}$



| Term                                            | Definition                                                                                           | Units              | Example                                                                                                             |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------|
| Stoichiometric Equation                         | Balanced Eqn                                                                                         |                    | N2 + 3H2 ==> 2NH3                                                                                                   |
| Stoichiometric Coefficient<br>(v <sub>i</sub> ) | Coefficients of stoich eqn that balance eqn,<br>negative for reactants                               |                    | vici = -1, vici = -3, visici = 2                                                                                    |
| Stoichiometric Ratio (S.R.)                     | Molar ratio in stoichiometric eqn                                                                    |                    | 1 N <sub>2</sub> / 3 H <sub>2</sub> in example above                                                                |
| Stoichiometric Proportion                       | If actual molar ratio in system equals the S.R.                                                      |                    | If you really have a 1:3 N2/H2 molar ratio                                                                          |
| Limiting Reactant                               | Whichever reactant has less than<br>stoichiometric proportion                                        |                    | If 1 mole N2 and 2 moles H2, H2 is the limiting reactant                                                            |
| Excess Reactant(s)                              | Reactant(s) with more than stoichiometric<br>proportion                                              |                    | N2 in box above                                                                                                     |
| Stoichiometric Requirement                      | Stoichiometric amount needed                                                                         | Moles              | If you have 1 mole N2, the stoichiometric<br>requirement is 3 moles H2                                              |
| Percent Excess                                  | % above stoich. proportion<br>(R=R_mich)/hench × 100%                                                |                    | If you have 4 moles H <sub>2</sub> , 1 mole N <sub>2</sub><br>(4-3)/3 = 1/3 = 33% excess H <sub>2</sub>             |
| Fractional Conversion $(f_i \text{ or } X_i)$   | Relative amount of feed reactant converted $\frac{n_{c0} - n_i}{n_{c0}}$                             | fraction<br>(or %) | Start with 3 moles H <sub>2</sub> , end with -3 moles H <sub>2</sub><br>F = $(3 - 0.3)/3 = 0.9$ , or 90% conversion |
| Extent of Reaction (ξ)                          | Amount reacted, normalized to the stoichiometric equation<br>$\bar{\xi} = \frac{n_i - n_{i,0}}{v_i}$ | Moles              | In box above,<br>$\xi = (0.3 - 3.0)/(-3) = 0.9$ moles                                                               |
| Yield                                           | mole of desired product                                                                              | fraction           | See worksheet                                                                                                       |
|                                                 | max possible moles at complete conversion                                                            |                    |                                                                                                                     |
| Selectivity                                     | moles of desired product                                                                             | fraction           |                                                                                                                     |
|                                                 | <b>S</b> moles undesired products                                                                    |                    |                                                                                                                     |