Chemical Reaction Terms

Term	Definition	Units	Example
Stoichiometric Equation	Balanced Eqn		$N_2 + 3H_2 ==> 2NH_3$
Stoichiometric Coefficient (v _i)	Coefficients of stoich eqn that balance eqn, negative for reactants		$v_{N2} = -1, v_{H2} = -3, v_{NH3} = 2$
Stoichiometric Ratio (S.R.)	Molar ratio in stoichiometric eqn		1 N ₂ / 3 H ₂ in example above
Stoichiometric Proportion	If actual molar ratio in system equals the S.R.		If you really have a 1:3 N ₂ /H ₂ molar ratio
Limiting Reactant	Whichever reactant has less than stoichiometric proportion		If 1 mole N ₂ and 2 moles H ₂ , H ₂ is the limiting reactant
Excess Reactant(s)	Reactant(s) with more than stoichiometric proportion		N ₂ in box above
Stoichiometric Requirement	Stoichiometric amount needed	Moles	If you have 1 mole N ₂ , the stoichiometric requirement is 3 moles H ₂
Percent Excess	% above stoich. proportion ($n_i-n_{i,stoich}$)/ $n_{stoich} \times 100\%$	%	If you have 4 moles H ₂ , 1 mole N ₂ (4-3)/3 = 1/3 = 33% excess H ₂
$\begin{tabular}{l} Fractional Conversion \\ (f_i \mbox{ or } X_i) \end{tabular}$	Relative amount of feed reactant converted $\frac{n_{i,0} - n_i}{n_{i,0}}$	fraction (or %)	Start with 3 moles H ₂ , end with3 moles H ₂ F = $(3 - 0.3)/3 = 0.9$, or 90% conversion
Extent of Reaction (ξ)	Amount reacted, normalized to the stoichiometric equation $\xi = \frac{n_i - n_{i,0}}{v_i}$	Moles	In box above, $\xi = (0.3 - 3.0)/(-3) = 0.9$ moles
Yield	mole of desired productmax possible moles at complete conversion	fraction	See worksheet
Selectivity	$\frac{moles of \ desired \ product}{\sum moles \ undesired \ products}$	fraction	