

Two Phases: Vapor & Liquid

- All charts above were for a PURE component – Pure H₂O or pure CO₂
- Wanted:
 - If at phase boundary, how much vapor and how much liquid at equilibrium?
 - If not at phase boundary (pure component), we only have vapor or liquid, not both!
- Also, what if we have more than one component?
 - What is the equilibrium composition of the liquid and the vapor?

Definitions

- Boiling point
 - Temperature at which liquid changes to vapor
 Is a function of P
- Normal boiling point – Boiling point at 1 atm
- Freezing point
 - Temperature at which liquid changes to solid
 - Is a function of P
- Sublimation point (you get the idea!)

Vapor Pressure Why does a wet sidewalk become dry on a cold day if water boils at 212°F? Why does a 2-liter bottle of Sprite stay fizzy until you open it for the first

- time?Why is humid air so uncomfortable in the summer?
- Why do swamp coolers work in the desert but not in the swamp?
- Why does a wet finger dry faster when I blow on it?
- What happens to the steam plume from a power plant?
- How do raindrops evaporate before hitting the ground sometimes?

So What Is Vapor Pressure?

- P_i*
- Measure of the volatility of a species
- For <u>pure</u> component:
 - The pressure of the vapor above a pure liquid at equilibrium (2-phase line)
- Redefine boiling point - T when P_i* = P_{tot} (pure substance)

 So.... P_i* is related to the number of moles that evaporate at a given temperature

Properties of Vapor Pressure

- P_i* is a function of T
 - If you raise the T, more of the substance wants to be vapor
 - Related to volatility, or tendency to evaporate at a given T
- P_i^* is different for each species
 - Related to MW_i
 - Related to chemical structure (aromatic, paraffinic, etc.)

P* is a function of T What is P*_{H2O} at 100°C and P_{tot} = 1 atm? P*_{H2O} = 1 atm, and since P_{tot} = P*_{H2O}, 2-phase What is P*_{H2O} at 100°C and P_{tot} = 10 atm? P*_{H2O} = 1 atm, and since P_{tot} > P*_{H2O}, 1-phase, liquid What is P*_{H2O} at 100°C and P_{tot} = 0.01 atm? P*_{H2O} = 1 atm, and since P_{tot} < P*_{H2O}, 1-phase, gas

Homework

- 6.2 T, P*, and V given
 - P_{tot} (easy!)
 - Wanted m_{tot}
 - calculate m_{liq} from density and volume
 calculate m_{vapor} from ideal gas law & MW
- 6.5 (6.6 3rd Ed.) from manometer, get P* vs T
 - Check with Clausius Clapeyron eqn.
- * 6.8 (6.9 3^{rd} Ed.) (a) Gibbs phase rule; (b) find P^{\star}
 - Please use both Antoine and DIPPR to find P*
 - $y_i = P_i^*/P_{tot}$
- Special Problem 6 (see handout)