Exam 2 Ch. 4.6 thru Ch. 6

- Take Home
- Closed Book, Closed Notes
- One 3 x 5 card with notes (both sides)
- 3 hour time limit
- 6 problems
- Wednesday (today) through Saturday
 - Due Monday morning at 10:00 am in class
- Needed:
 - Calculator
 - Ruler
 - Pencil

After the Exam

- 11 "lectures"
- 1 Exam Review
- 3rd Exam
- 5 class periods to work on Case Study
- Review for Final Exam

TA Review Session

What Do I Study? First Look at Competency Expectation Students will be able to solve sendy-state, overall, material bilances for systems which include one or more of the following: disconseque; disc

- Look through the review sheet with a neighbor
- · Identify what you would like to review most

Definition of Pressures

- ullet P_{tot} Total Pressure, as in PV=znRT
- P_i Partial Pressure $P_i = y_i P_{tot}$

 $P_iV = z_i n_i RT$

P_i* Vapor Pressure = f(T),

used in Raoult's law

· Raoult's Law

$$y_i P_{tot} = x_i P_i^*$$

Standard State Conditions

- Normally at 1 atm and 0°C
- · Commonly used in measurements
- Concept: moles are the same

•
$$n = \left(\frac{PV}{RT}\right)_{STP} = \left(\frac{PV}{RT}\right)_{actual}$$

Example

Your flow meter says 30 slpm, and you measure T=30°C and P=5 psig. What is the actual volumetric flow rate?

Compressibility Experiment in UO Lab (ChE 475)

- 25% CO₂, 75% Ar
- T = 20°C
- Find z at different pressures

- Compressibility Chart (Law of Corresponding States)
- Kay's Rule for mixture
 - Seniors get mixing rules for non-ideal equations of state from the Thermo class

(reacting systems – useful) • No generation and consumption terms In = Out • Count moles of atoms - Split up species into atoms • Add # of independent atomic element balances to DOF analysis +# of unknowns -# of independent atomic element balances -# of independent non-reacting molecular species balances -# of other equations

= DOF

2. Atomic Element Balances