

Dr. Fletcher's Sanity Rules

- Wait 24 hours to come see me about points
- Please come see me if you think it was graded wrong or unfairly
 - Don't be afraid to come see me (please!)

Professional Program Application

- Due Apr. 15 to ChE Office
- Must meet with your ChE Faculty Advisor
- Must update the course planning Excel Spreadsheet
- · Must take a shot at your electives
- This is not a contract!
- · Allows you to take Fluids (ChE 374) in F'17

Exam 3 (In case you were wondering)

- Closed Book
- · Closed Notes
- 3 hrs
- One 8x10 page with equations and notes (both sides)
- · All tables and data will be provided

Homework Hints (from web page)

- 7-18 (7-16 in 3rd Ed.)
 - Since an equation is given for the enthalpy, you cannot use the steam tables
 - You may use the ideal gas law here to calculate the number of moles.
- 7-32 (7-28 in 3rd Ed.)
 - Assume that the local atmospheric pressure is 1 bar

These hints are on the web page

Enthalpy

• An energy term made up for convenience

H = U + PV $\hat{H} = \hat{U} + P\hat{V}$ (per kg or kgmole)

 Commonly used for open systems

 For those of us who hate converting pressure units to energy units!!!

• At Steady State: $\Delta \dot{H} + \Delta \dot{E}_{K} + \Delta \dot{E}_{P} = \dot{Q} + \dot{W}_{s}$ Units: Btu/hr or J/s or kW

```
where \Delta \dot{H} = \dot{m} \Delta \hat{H} = \dot{m} (\hat{H}_{out} - \hat{H}_{in})
```


Steam Tables

- · Tables are always with respect to some reference state
- ΔH from reference state is the value in the table
- · If you use data from different tables, you will need to adjust for the reference state - This can cause huge errors
- · Enthalpy is a state property Does not depend on path

What they say	What they mean
Well insulated	$Q = 0$, but $\Delta T \neq 0$
Adiabatic	$Q = 0$, but $\Delta T \neq 0$
Isothermal	$\Delta T = 0$, but $Q \neq 0$
Rigid Container	Volume doesn't change $W_{PV} = 0$
Isochoric	Constant Volume $W_{PV} = 0$
No mechanical parts, or no moving parts	$W_s = 0$

- 1.What is ΔH_{vap} at 30 bar?
- 2.What is P*_{H2O} at 311°C?
- 3.What is \hat{v}_{water} at 84°C?
- 4.What is \hat{H}_{water} at 200 bar and 100°C?
- 5. What is \hat{H}_{steam} at 80 bar and 600°C?
- 6. What is the dew point temperature (T_{dp}) for question #5?
- 7.What is the temperature and enthalpy of saturated steam at 80 bar?
- 8. What is the enthalpy of 10% quality steam at 30 atm? (Quality is defined as the wt% steam in a steam-water system).

1.What is ΔH_{vap} at 30 bar? 1793.9 kJ/kg (Table B.6)	
2.What is P* _{H2O} at 311°C? 100 bar (Table B.6)	
3.What is \hat{v}_{water} at 84°C? 0.001032 m³/kg (Table B.5)	
4.What is \hat{H}_{water} at 200 bar and 100°C? 434.0 kJ/kg (Table B.7)	
5.What is \hat{H}_{steam} at 80 bar and 600°C? 3640 kJ/kg (Table B.7)	
6.What is the dew point temperature (T _{dp}) for question #5? 295.0°C (Table B.7)	
7.What is the temperature and enthalpy of <u>saturated</u> steam at 80 bar? 295.0°C, 2759.9 kJ/kg (Table B.6)	
8.What is the enthalpy of 10% quality steam at 30 atm? (Quality is defined as the wt% steam in a steam-water system).	
0.9*1008.4 + 0.1*2802.3 = 1187.8 kJ/kg (Table B.6)	

