

Professional Program Application

- Due Nov. 17 to ChE Office (2 weeks!)
- · Must meet with your ChE Faculty Advisor - This is not Brother Oakeson!
- Must update the course planning Excel Spreadsheet
- · Must take a shot at your electives
- · This is not a contract!
- Allows you to take Fluids (ChE 374) in F'17

Teams for Case Study

Team	Team Leader			
1	Jacobs James Ryan	Home Benjamin Robert	Baird Jonathan Reese	Benning Alexander Patrick
2	Wallentine Jakob Scott	Van Wagoner Colton Taylor	Holt Cole Joseph	Christensen Alan Spencer
3	Frandsen Jacob Roberts	Rice Taylor Blake	Welling Evelyn Esther	Brady Cassandra Jane (Guffy)
4	Timmerman Brandon David	Lore James David	Sederholm Jarom Glen	De Jesus Arielle Jernima Belza
5	Arment Joshua Randall	Hart Elizabeth Hannah	Wood Benson Reid	Davis Brady Rockwell
6	Schooff Brian Jeffrey	Smith Madison Jane	Van Katwyk Nathan Kirk	Crofts Magdalena Rose
7	Martineau Joshua Michael	Free Tyler Jordan	Potter Kalen Dell	Bourdeau Jefferson Eddy
8	Bailey Paul Widdison	Lee Wan Luan	Ashby James Michael	Jones Harry Orville
	Fiease sit by j			and email

Class 26

- Hint on Prob 7.45 (7.41 in 3rd Ed. and workbook) - Assume 1 bar total pressure (workbook assumes 1 atm)
- Hint on Prob 7.46 (7.42 in 3rd Ed.) - Take a basis of 100 mol/hr instead of just 100 mol - You will have to do a total mole balance and a balance on one of the species in order to find the molar flow rates of the two exit streams

More Definitions

- Isentropic = constant entropy ($\Delta S = 0$)
- Isobaric = constant pressure ($\Delta P = 0$)
- · Isotropic = no change with direction

- Standard textbook definitions of Entropy a measure of <u>energy dispersal</u> at a specific temperature. a measure of disorder in the universe or of the availability of the energy in a system to
- a measure of a system's thermal energy per unit temperature that is unavailable for

doing useful work. Entropy has often been loosely associated with the amount of <u>order</u> or <u>disorder</u>, or of <u>chaos</u>, inat

Open System Energy Balance

• At Steady State: $\Delta \dot{H} + \Delta \dot{E}_{K} + \Delta \dot{E}_{P} = \dot{Q} + \dot{W}_{s}$ Units: Btu/hr or J/s or kW or cal/min where $\Delta \dot{H} = \dot{m} \Delta \hat{H} = \dot{m} (\hat{H}_{out} - \hat{H}_{in})$ or for multiple species: $\dot{H}_{out} = \sum \dot{n}_{i,out} \hat{H}_{i,out}$ $\dot{H}_{in} = \sum \dot{n}_{i,in} \hat{H}_{i,in}$

Properties of Each Stream						
Stream	Phase(s)	T (°F)	P (psia)	H (Btu/lb)		
1	Sat'd liq	80	170	32		
2	Liq + vap	-12	30	32		
3	Sat'd vapor, S=.23 Btu/lb-°R	-12	30	104		
4	Vapor S=.23 Btu/lb-°R	130	170	122		

- 1. From evaporator, find mass flow rate
- 2. From compressor, find work required
- 3. From condenser, find cooling rate
- 4. Check overall balance

Do It!

