
Mechanical Energy Balance Class 27

- · Counting today
 - 8 classes with new material (8 HW assignments)
 - 7 on energy calculation and balances
 - 1 on transient balances
 - 1 exam review
 - Exam #3
 - 5 classes for Case Study
 - 1 review for Final Exam
 - 1 Final Exam

The End Is Near!

Mechanical Energy Balance

- · Special Case
 - No temperature change ($\Delta U \approx 0$)
 - No chemical reaction (Δ H ≈ 0)
 - Velocity, pressure, and friction are important
- Energy equation reduces to the "mechanical" energy equation

$$\frac{\Delta P}{\rho} + \frac{\Delta u^2}{2} + g\Delta z + \hat{F} = \frac{W_{\rm S}}{\dot{m}}$$
 Pressure Velocity Height Friction Shaft

Mechanical Energy Balance

$$\frac{\Delta P}{\rho} + \frac{\Delta u^2}{2} + g\Delta z + \hat{F} = + \frac{W_s}{\dot{m}}$$

• If $\hat{F} = 0$ and $W_s = 0$, then we have **Bernoulli's Equation**

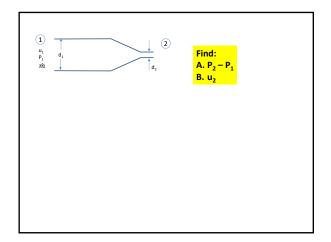
$$\frac{\Delta P}{\rho} + \frac{\Delta u^2}{2} + g\Delta z = 0$$

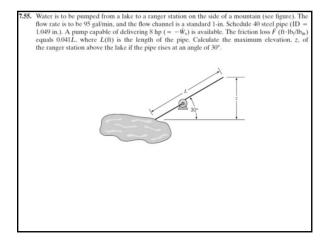
$$\frac{P_2 - P_1}{\rho} + \frac{u_2^2 - u_1^2}{2} + g(z_2 - z_1) = 0$$

Other Useful Relationships

Volumetric flow rate

$$\dot{V} = uA$$

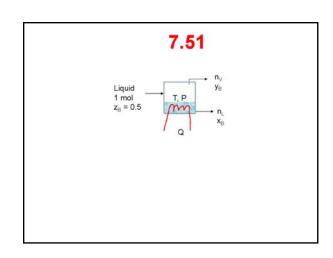

 $m^3/s \hspace{0.5cm} (m/s)(m^2)$

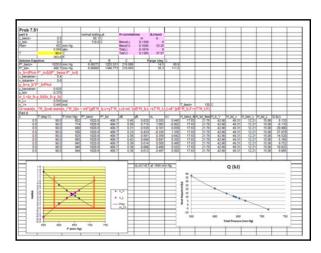

Mass flow rate

$$\dot{m} = \rho A u$$

$$kg/s$$
 $(kg/m^3)(m^2)(m/s)$

Examples


7.51. A liquid mixture of benzene and toluene is to be separated in a continuous single-stage equilibrium flash tank.


Vapor product

Individual feed

I mol (Dania)

I mol

