

What was the purpose of Problem 8.88?

- · Practice the following concepts:
 - Energy balances
 - Mass balances
 - Psychrometric chart
 - Recycle
 - Dry air as a constant quantity in balances

Schedule

- · Today Heats of Reaction, **Heat of Combustion**
- Wed Energy Balance with Reaction
 - Wakning on Reading:
 Skip "Heat of Reaction Method" on pages 505-506 (450-451 in 3" Ed.)
 Skip Examples 9.5-1, 9.5-2, and 9.5-3 (equations are generally wrong except in special circumstances!)
- Fri Practice Energy Balance with Reaction
- Mon Adiabatic Flame Temperature
- Tues Transient Balances
- Mon after Thanksgiving Review for Exam 3

Heats of Reaction 1. Definition

- ΔH_r = heat of reaction (kJ/mol or Btu/lbmol or cal/mol)
 - If $\Delta H_r < 0$, exothermic (gives off heat)
 - If $\Delta H_r > 0$, endothermic (needs heat)
- ΔH_r^0 = standard heat of reaction (i.e., at 25°C)
- Heat of reaction always defined by complete reaction (i.e., $X_A = 1$) even if the reaction does not go to completion
 - Heat absorbed per mole reacted
- Remember for a single reaction, $\xi = \frac{n_{A,out} n_{A,in}}{v_A} = \frac{n_{A,reacted}}{v_A}$
- Therefore ΔH_{system} = $\xi \, \Delta H_{\text{r}}$

$$(moles\ reacted) \cdot \left(\frac{kJ\ of\ energy}{moles\ reacted}\right)$$

Heats of Reaction 2. From Heats of Reaction

- ΔH_f⁰ = heat required to form species at 1 atm, 25°C
 - Tabulated in Table B.1, 2nd to last column
- Assumes all reactants and products at 25°C
- $\Delta H_r^0 = \sum v_i \Delta H_{fi}^0$
 - Remember negative sign for reactants
- Like products minus reactants
- · Example: Gasification of carbon

$$C(s) + H_2O(g) \Rightarrow CO(g) + H_2(g)$$

Species $\Delta H_{f,i}^{0}$ (kJ/mol)

-241.83 H_2O

 $\Delta H_r^0 = -110.52 + 0 - 0 - (-241.83) = +131.31 \text{ kJ/mol}$ -1 CO -110.52 1

0.0 H_2

Endothermic!

Heats of Reaction 3. Path Independent

• $C(s) + O_2 \Rightarrow CO_2$

 $\Delta H_r^0 = -393.51 \text{ kJ/mol}$

• $C(s) + \frac{1}{2}O_2 \Rightarrow CO$

 $\Delta H_r^0 = -110.52 \text{ kJ/mol}$

CO + ½O₂ ⇒ CO₂

 $\Delta H_r^0 = -282.99 \text{ kJ/mol}$

• $C(s) + O_2 \Rightarrow CO_2$

 $\Delta H_r^0 = -393.51 \text{ kJ/mol}$

- Hess's Law:
 - Add or subtract reactions to get correct ΔH,

Heats of Reaction 4. Heat of Combustion

- ΔH_c⁰ = heat of combustion at 1 atm, 25°C
 - Tabulated in Table B.1, 2nd to last column
 - Assumes all reactants and products at 25°C
 - All C ⇒ CO₂ (g)
 - All H ⇒ H₂O (liq) (for "high heating value")
 - $-AIIS \Rightarrow SO_2(g)$
 - All $N \Rightarrow N_2(g)$
- Heating value = ΔH_c^0
- Example: $NH_3 + \frac{3}{4}O_2 \Rightarrow \frac{3}{2}H_2O(liq) + \frac{1}{2}N_2$ $\Delta H_{f,i}^{0}$ (kJ/mol): -46.19 0.0 -285.84 0.0

 $\Delta H_r = 3/2(-285.84) - (-46.19) = -382.57 \text{ kJ/mol}$ (same as ΔH_c^0 in Table B.1)

Heats of Reaction 6. Review

• How do you find \widehat{H} at different temperatures?

$$\widehat{H} = \Delta \widehat{H}_f^0 + \int_{25^{\circ}\text{C}}^T \widehat{C}_p dT$$

- Suppose $\hat{C}_{p,methane} \approx 0.079 \frac{kJ}{mol \, ^{\circ} \text{C}}$ and $\Delta \hat{H}_{f,methane}^0 = -74.85 \frac{kJ}{mol}$
- Find $\widehat{H}_{methane}$ at 400°C
- \widehat{H} = $-74.85 \frac{kJ}{mol} + \int_{25^{\circ}C}^{400^{\circ}C} 0.079 \frac{kJ}{mol \circ c} dT$ = $-74.85 + 0.079 * (400 25) = -45.22 \frac{kJ}{mol CH_4}$

Multiple Species

Calculate the energy required to raise a mixture from 25°C to

Species	Gram-moles
02	0.05
CO ₂	1.0
но	0.3

$$\Delta H = \sum n_i \Delta H_i$$

$$\begin{split} \Delta H &= \sum n_i \Delta H_i \\ \Delta H_{O2} &= \int\limits_{25}^{400} C_{p,O_2} dT \\ &= a_{O_2} (400 - 25) + \frac{b_{O_2}}{2} (400^2 - 25^2) + \frac{c_{O_2}}{3} (400^3 - 25^3) \\ &+ \frac{d_{O_2}}{4} (400^4 - 25^4) \end{split}$$

Multiple Species

• Now get $\Delta H = \sum n_i \Delta H_i$

$$\begin{split} 0.05 * \left(a_{O_2}(400-25) + \frac{b_{O_2}}{2}(400^2 - 25^2) + \frac{c_{O_2}}{3}(400^3 - 25^3) + \frac{d_{O_2}}{4}(400^4 - 25^4)\right) \\ 1.0 * \left(a_{CO_2}(400-25) + \frac{b_{CO_2}}{2}(400^2 - 25^2) + \frac{c_{CO_2}}{3}(400^3 - 25^3) + \frac{d_{CO_2}}{4}(400^4 - 25^4)\right) \\ 0.30 * \left(a_{B_2O}(400-25) + \frac{b_{H_2O}}{2}(400^2 - 25^2) + \frac{c_{H_2O}}{2}(400^3 - 25^3) + \frac{d_{H_2O}}{4}(400^4 - 25^4)\right) \end{split}$$

This is a lot of programming or punching buttons on a calculator!

Shortcut (Combine coefficients)

$$\begin{split} &0.05*\left(a_{O_2}(400-25)+\frac{b_{O_2}}{2}(400^2-25^2)+\frac{c_{O_2}}{3}(400^3-25^3)+\frac{d_{O_2}}{4}(400^4-25^4)\right)\\ &1.0*\left(a_{CO_2}(400-25)+\frac{b_{CO_2}}{2}(400^2-25^2)+\frac{c_{CO_2}}{3}(400^3-25^3)+\frac{d_{CO_2}}{4}(400^4-25^4)\right)\\ &0.30*\left(a_{B_2O}(400-25)+\frac{b_{B_2O}}{2}(400^2-25^2)+\frac{c_{B_2O}}{2}(400^3-25^3)+\frac{d_{B_2O}}{2}(400^4-25^4)\right) \end{split}$$

Define new variables:
$$a'=\sum n_ia_i \qquad b'=\sum n_ib_i \qquad c'=\sum n_ic_i \qquad d'=\sum n_id_i$$

Now ΔH becomes:

$$\Delta H = a'(400-25) + \frac{b'}{2}(400^2-25^2) + \frac{c'}{3}\Big(400^3-25^3\Big) + \frac{d'}{4}\Big(400^4-25^4\Big)$$

Example

- $CO + \frac{1}{2}O_2 \rightarrow CO_2$
- Find the heat of reaction at 1200°C
 - A. ΔC_p approach (path method)
 - B. H_{out} H_{in} (ΔH_f^0 approach)

See spreadsheet