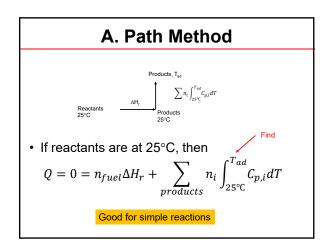
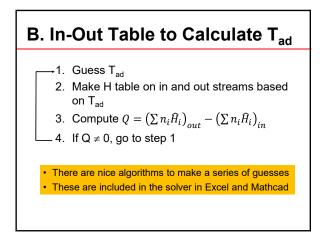
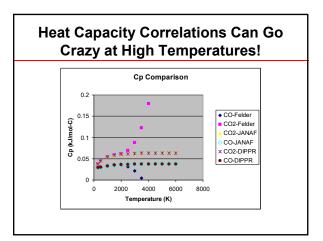
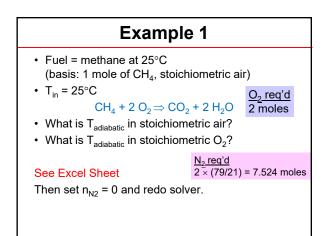
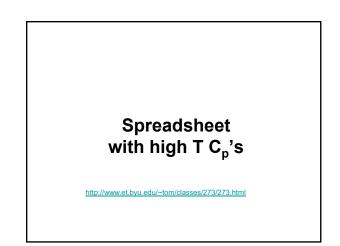

Homework Hints

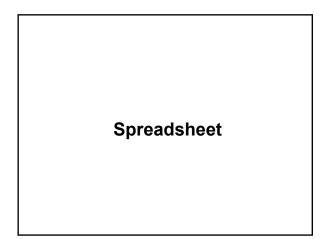

• See online hint for Problem 9-66 (9-56 in 3rd Ed.)

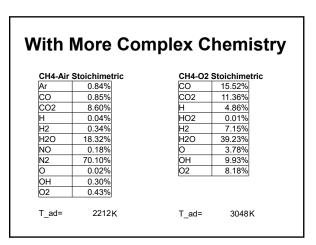


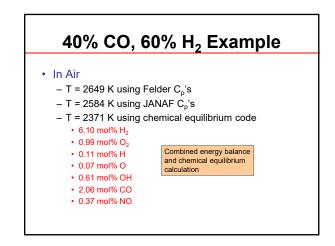

Term	Units	Explanation
Н	J	
Ĥ	J/s	
Ĥ	J/mol or kJ/kg	
ΔH_f^0	kJ/mol	
ΔH_{rxn}	kJ/mol	
ΔH_c	kJ/mol	
ΔH_{vap}	kJ/mol	
ΔH_m	kJ/mol	

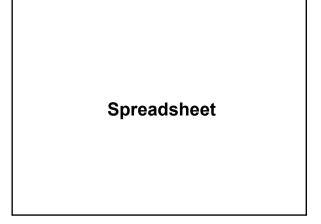



	Review of Enthalpy			
Term	Units	Explanation		
Н	J	Total enthalpy (H = U + PV)		
Ĥ	J/s	Enthalpy per time		
Ĥ	J/mol or kJ/kg	Specific enthalpy (i.e., enthalpy per unit mass or mole)		
ΔH_f^0	kJ/mol	Standard heat of formation (⁰ means at 1 atm, 25°C)		
ΔH_{rxn}	kJ/mol	Heat of reaction		
ΔH_c	kJ/mol	Heat of combustion (in book, this corresponds to the high heating value with liquid H_2O as a product) (⁰ means reactants and products at 1 atm, 25°C)		
ΔH_{vap}	kJ/mol	Heat of vaporization (liquid \Rightarrow vapor) (Value in Table B.1 at boiling temperature, 1 atm)		
ΔH_m	kJ/mol	Heat of melting (Value in Table B.1 at melting temperature, 1 atm)		





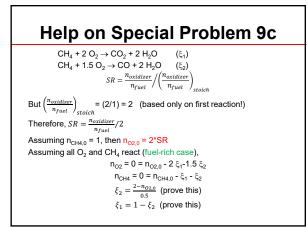


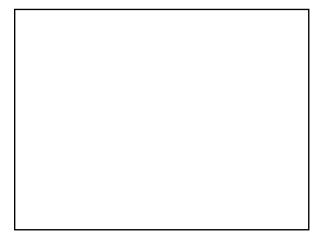


Mistake Students Made on Exam

- Fuel = 40 mol% CO, 60 mol% H₂ (basis: 1 moles of fuel)
- CO + H₂ + O₂ => CO₂ + H₂O
- Rationalize: 1 mole of O₂ needed
- Problems with this idea:
 - There are actually 2 moles fuel in this equation (1 CO and 1 H₂)
 There are not equal amounts of CO and H₂ (although this would not have caused the error)
- 4CO + 6H₂ + 5O₂ =>4 CO₂ + 6H₂O
- · Better to treat each fuel separately

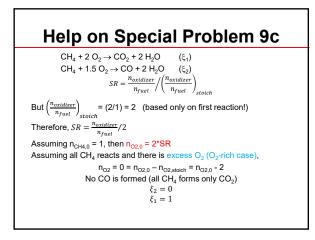
40% CO, 60% H₂ Example


- In O₂
 - T = 5047 K using Felder C_p's
 - T = 5038 K using JANAF C_p 's
 - T = 3009 K using chemical equilibrium code
 - 5.84 mol% H₂
 - 8.79 mol% O₂
 - 3.91 mol% H
 - 3.44 mol% O
 - 8.37 mol% OH
 - 17.41 mol% CO
 Trace HO₂



Message:

- If temperatures get too hot, other species (like radical species) become stable, lowering the flame temperature!
- In particular, CO is as stable as CO₂ at high temperatures (above 2700 K)



Questions?

- Enthalpy
- · Heat Capacities
- · Heat of Formation
- · Heat of Vaporization, Heat of Melting
- Heat of Combustion
- Energy Balances
- Adiabatic Flame Temperature

