Happy Monday!!!

Fun Video

Fatherly Advice

- · Don't get behind!
- E COLL
- Draw pictures of process

 Try pot to take abortants
 - Try not to take shortcuts
 - Work efficiently
- We will not be using E-Z Solve
- We have Mathcad and Excel
- There is a lot of reading in the workbook on Problem 4.11 (4.17 in 4th Ed.), but it is worth it!!
- Workbook pages are optional on all starred problems
- The author throws in some "think about it" problems
 - This coincides with a college initiative on innovation
 - Have fun with it; use engineering intuition

Outline for Class 6

- · Define "Independent Equations"
- Degree of Freedom Analysis (DOF)
 - Procedure
 - Examples
- · Define "Other Relations"
- Please write in the front cover of 3^{rd} Edition: ρ_{H2O} = 1 g/cm³ = 1000 kg/m³ = 62.4 lb_m/ft³ = 1 kg/liter

Degrees of Freedom Analysis

- · Method to attack problems
- Kind of like # of eqns = # of unknowns
- · Can tell where to start a problem
- DOF required for all remaining problems in Chapter 4

From my Mother-In-Law:

If you don't listen you gotta feel

Independent Equations

Who Can Solve the Following Equations?

$$x + 2y = 4$$
$$2x + 4y = 8$$

DOF in Chem Eng

Non-Reacting Systems

- Equations come from material balances
- # independent balance eqns = # species

Common mistake:

- Write all species balances <u>plus</u> overall balance
 - Not all independent

Example: 2 species

Species Balances:

$$x_{A1}m_1 + x_{A2}m_2 = x_{A3}m_3$$

 $x_{B1}m_1 + x_{B2}m_2 = x_{B3}m_3$

Total Mass Balance

$$m_1 + m_2 = m_3$$

$$x_{A1} + x_{B1} = 1$$
, etc.

of Unknowns

of Equations

Additional Equations

- Equations other than material balance equations are sometimes given
- · Often necessary to solve the problem
- · Relate some of the unknown variables

Example:

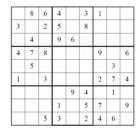
• 95% of the feed ends up in stream 1

$$\dot{m}_1 = 0.95 \dot{m}_{feed}$$

For DOF analysis, DO NOT SOLVE YET!

DOF for Non-Reacting Systems

unknowns


- # independent balance equations
- # of additional relationships

DOF

Formal method
Useful for complicated systems (tells you where to start)

If DOF = 0 good! (unique solution possible)
DOF > 0 No unique solution (too many unknowns)
DOF < 0 Over-specified (too many eqns, or one eqn may not be independent)

Analogy to Sudoku

- How would you set up a logic diagram to solve any sudoku puzzle?
 - Is it solvable?
 - Where do you start?

Example 1 (on handout)

Helpful Hints on DOF

- 1. Use species flow rates (m_{1A}, m_{1B}, etc.) if possible instead of mole fractions (y_{1A}, etc.)
- 2. Remember that one species mass or mole fraction is not independent ($\Sigma y_i = 1$)
- If only one species mass or mole fraction in a stream is unknown, calculate it and treat it as known
- 4. It is often easiest to use the total mass balance as one equation instead of all of the species balances
- Use the flow rate given in the problem as the basisChoose a basis if only mass fractions are given
- 6. If you know the densities and volumetric flow rates, calculate mass flow rates immediately

Example 2

(on back of handout)

Other Examples

- Prob 4.24 (4.15 in 3rd Ed.)
- Prob 4.18 (4.12 in 3rd Ed.) (if time)

