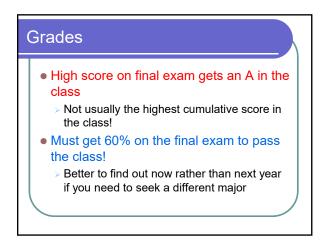
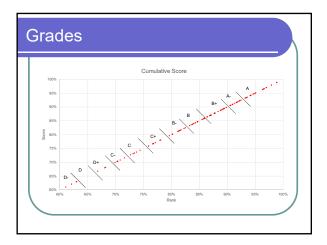
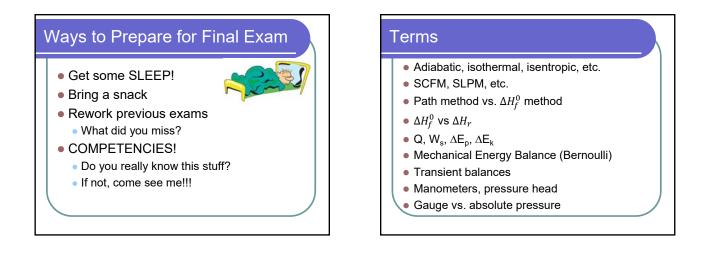
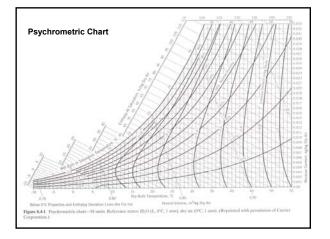
Case Study

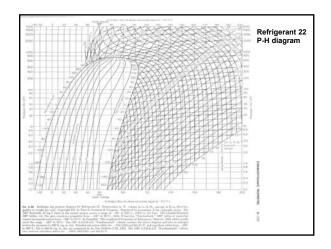
- Printed copy of Excel sheet and accompanying explanation of equations
- Email spreadsheet to Allen Black
 allen.m.black@gmail.com
- Email the leadership evaluation to me
 - If email only, put name in subject box
 - If MS Word, put name in name of file


AWARDS!!!


- Damon Petersen
- Thomas Webber
- Landon Schofield
- Clarissa Westover
- Joshua Frei




Final Exam 221 MARB Tuesday, Apr 19, 7-10 am Closed Book, Closed Notes/Homework Two 8×10 pages with notes on both sides I am not supplying equations I am supplying data (C_p's, ΔH₀°, etc.) Calculator needed Straight edge needed Time limit is 3 hours Aligned with competencies!! Somewhat aligned with what was missed on previous exams



Level	Competency Expectation
3	Students will be able to use basic engineering units in both SI and AES systems in solving problems, and be able to convert between unit systems both by hand and with an equation solver.
3	Students will be able to solve steady-state, overall, material and energy balances for systems which include one or more of the following: recycle, multiple units, chemical reactions.
3	Students will understand the phase behavior of pure substances in relationship to the variables T, P, and density (including vapor pressure, critical point, freezing line, triple point, etc.).
3	Students will be able to use the mechanical energy balance equation to solve fluid flow problems both with and without friction.
3	Students will be introduced to the first law of thermodynamics for closed and open systems.
3	Students will understand and be able to use the extent of reaction in material balances
2	Students will be able to set up and solve simple transient material balances.
2	Students will be able to use a degree-of-freedom approach to assist in the solution of material and energy balances.
2	Students will be able to read mixture phase diagrams (solid solubility, liquid-liquid, VLE) and construct mass balances from them using the lever rule, tie lines, etc.
2	Students will be able to solve simple fluid statics problems (e.g., manometers, fluid head, etc.).
2	Students will be able to apply Raoult's law to solve VLE problems including bubble point, dew point, and flash calculations.
2	Students will be introduced to equations of state and corresponding states correlations.
2	Students will be introduced to the concepts of heat capacity, latent heat, heat of reaction, heat of combustion, and heat of formation.
2	Students will be introduced to calculations involving work in turbines, compressors, and pumps.

