Chapter 2

Conversion of Units/Systems of Units (lb-moles vs g-moles, pressure, etc.) Force Units (lb_m vs. lb_f, g_c, etc.) Density, specific gravity

Chapter 3

Mass vs. Mole Fractions Average Molecular Weight Fluid Pressure and Hydrostatic Head Manometers, Barometers Atmospheric (i.e., ambient) Pressure, Absolute Pressure, and Gauge Pressure

Chapter 4

The General Balance Equation (accum = in - out + ...)Transient Material Balances (m, m_i, n, n_i)

Steady-State Material Balance Calculations for Non-reacting Flows

- a. Flow diagrams, Scaling, and Using a Basis
- b. Balancing a Process Degrees of Freedom
- c. Outline of a Procedure for Material Balance Calculations
- d. Multiple-Unit Processes/Recycle and Purge (non-reacting flows)

Material Balances with Reaction

- a. Species balances with generation/consumption (not used much)
- b. Species balances with extent of reaction (ξ)
- c. Element balances
- d. DOF analysis on reacting systems
 - i. Additional unknown for each reaction (extent of reaction)
 - ii. Elemental balances
 - iii. Use reacting DOF for "block" with reacting systems
- e. Definitions
 - i. Stoichiometry, stoichiometric conditions
 - ii. Limiting reactant
 - iii. Percent excess
 - iv. Yield
 - v. Single-Pass Conversion
 - vi. Overall conversion
 - vii. Selectivity
- f. Combustion Reactions
 - i. Should be able to write and balance these reactions for complete combustion, etc.
 - ii. C \rightarrow CO₂, H \rightarrow H₂O, S \rightarrow SO₂, N \rightarrow N₂
 - iii. Theoretical and excess air
 - iv. Dry basis for compositions, use of ndry

How to Study

Please study hard <u>before</u> the exam; there is not time to study <u>during</u> the exam!

- Look at the competencies
 - Do I know how to do that stuff?
 - What kind of problems could be on the exam for each competency?
- Skim (not read) the text
 - work through the examples in the text (from scratch!)
- Review the homework problems, check answer key (Did I understand everything?)
- Review Dr. Fletcher's lecture notes posted on the web and my class notes
- Study the practice exam (available on learning suite)
 - The TA's have the answer key (caution: study <u>before</u> taking the practice exam!)
- Select problems from the end of chapters and work them
- Pose sample exam problems to other students in the class (What do I think is important?)

Exam Tips

- 1. Read all questions first
- 2. Work simple problems quickly (look at point distribution)
- 3. Set up longer problems (but no numbers)
- 4. Finish working problems you can (remember partial credit helps a lot)

Level	Usage	Competency Expectation
		Students will be able to use basic engineering units in both SI and AES
		systems in solving problems, and be able to convert between unit
3	Μ	systems by hand
		Students will be able to solve steady-state, overall material balances for
		systems which include one or more of the following: recycle, multiple
3	Μ	units.
		Students will be able to set up and solve simple transient material
2	М	balances.
		Students will be able to use a degree-of-freedom approach to assist in
2	М	the solution of material balances.
		Students will be able to solve simple fluid statics problems (e.g.,
2	М	manometers, fluid head, etc.)
		Students will be able to use a problem solving strategy to define and
3	М	solve engineering problems.
		Students will learn about chemical processes, units, and corresponding
2	М	equipment
		Students will be introduced to process variables (e.g., P, T, flow rate,
2	М	conc.) and their measurement.

Competencies Covered Before Exam 1