Thoughts on Global Energy

Tom Fletcher
Professor, Associate Chair
Chemical Engineering Department
Brigham Young University

Primary Sources of Energy

- Fossil
 - Oil
 - Coal
 - Gas
- Nuclear
 - Fusion
- Solar
 - Hydropower
 - Biomass
 - Photovoltaic
 - Solar thermal
 - Wind
- Geothermal

Non Renewables

Renewables

How much do we consume?

- Worldwide consumption rate (per second)
 - 37,000 gals of oil
 - 150 tons coal
 - 3.2 Mcf gas
- Units must have come from a veritable tower of Babel!
 - Thersms (or BTUs), MWh, Barrels (bbl), Tons, Tcf ...
- Lack of uniform units presents a serious impediment to meaningful discussion
- Further confusion caused by the necessity to use millions, billions, trillions, and quadrillions of whatever

Idea: Cubic Mile of Oil Equivalent

- A unit that can be visualized
- Also, 1 cmo = current annual worldwide oil consumption

1 cmo is equivalent to:

- 26 Billion (10^9) bbl oil
- 6 Billion (10^9) tons of hard coal
- 49.5 Trillion (10^12) KWh electricity
- 153 Quadrillion (10^15) Btu (Quads)

1 Btu = energy from a burning match

Primary Sources of Energy in cmo (2000)

<table>
<thead>
<tr>
<th>Source</th>
<th>Value (cmo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil</td>
<td>2.2</td>
</tr>
<tr>
<td>Oil</td>
<td>1.0</td>
</tr>
<tr>
<td>Coal</td>
<td>.61</td>
</tr>
<tr>
<td>Gas</td>
<td>.57</td>
</tr>
<tr>
<td>Nuclear</td>
<td>.17</td>
</tr>
<tr>
<td>Fusion</td>
<td>.17</td>
</tr>
<tr>
<td>Solar</td>
<td>.21</td>
</tr>
<tr>
<td>Hydropower</td>
<td>.19</td>
</tr>
<tr>
<td>Biomass</td>
<td>.02</td>
</tr>
<tr>
<td>Photovoltaic</td>
<td><.005</td>
</tr>
<tr>
<td>Solar thermal</td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td></td>
</tr>
<tr>
<td>Geothermal</td>
<td>.01</td>
</tr>
</tbody>
</table>

Total 2.6

2.2 out of 2.6 cmo or 85% from fossil sources

Historic Trend in Energy Use

- Doubling every 27 years
- Increases in population and living standards drive the exponential increase in energy consumption
- By 2050, the world will need between 2 and 7 additional cmo's!!!
- Where will this come from???
Switching to Non-Fossil Energy

- What do we do?
 - Hydro
 - Nuclear
 - Wind
 - Biomass
 - Photovoltaic

Let’s estimate what it would take to get 1 cmo from any of these sources by 2050

Hydroelectric – to get 1 CMO

- Three Gorges Dam is 18.2 GWe
 - 9 times size of Aswan Dam
 - $30 billion (US)
 - 15 years (1994 to 2009)
 - Displaced 1 million people from homes
 - 18.2 GWe is .003 CMO!
 - Need over 300 such dams to get 1 CMO!
 - By 2050, need 1 completed every 2 months

Nuclear – to get 1 CMO

- Diablo Canyon has two reactors of ~1100 MW each
 - Operating for 15 years
 - Studies on earthquake survivability
 - One of two operating nuclear plants in CA
 - Provided 1.72 × 10^7 MW-hrs of electricity in 2003
 - 0.00039 CMO
 - Need over 2500 such facilities to get 1 CMO!
 - By 2050, need ~5 facilities completed every month

Wind – to get 1 CMO

- Denmark is putting 2 MW windmill/turbines into the North Sea
 - 64 m high at hub, 74 m rotor diameter (210 ft high at hub, 243 ft diameter)
 - 10 turbines provided 89 × 10^3 MW-hrs of electricity for Copenhagen
 - 2 × 10^-7 CMO per windmill
 - Need over 5 million such facilities to get 1 CMO!
 - By 2050, need over 300 such large windmills completed every day!
 - Problems for 2/3 of time wind is not right

Biomass – to get 1 CMO

- Average of 15 tons of biomass per acre per year (in U.S.)
- Average energy content of 7500 Btu/lb
 - Small power plants with low conversion efficiency (~20%)
 - Extra ~75% fossil fuel needed to convert to liquid fuels
 - 1.5 × 10^-9 CMO per acre (not including efficiency of conversion)
 - Need over 680 million acres to get 1 CMO!
 - ~1 million square miles, or a square 1000 miles by 1000 miles
 - Impact on food prices (especially meat, wheat, etc.)
Photovoltaic – to get 1 CMO
- Quite expensive to get electricity
- Not bad for hot water
- Average 80 kW-hr/m² of power per year
- 1.8×10^{-12} CMO per m²
- Need over 200,000 square miles of photovoltaics to get 1 CMO!
 - A square 450 miles by 450 miles

This analysis was for 1 CMO by 2050!
The world may need 2-7!
We have an enormous task ahead of us...
What about fossil fuel options?

Coal – to get to 1 CMO
- IPP plant near Delta, UT
 - Two 975 MW facilities
 - Each burns ~1 million pounds/hr of coal
 - All converted to DC power and shipped to the LA basin, then reconverted to AC power
- Assume 36% efficiency, 97% uptime
 - 16.6 million MW-hrs of power per year
 - .00103 CMO/yr
- Need 968 such facilities by 2050 to get 1 CMO!
 - 19 plants per year for 50 years, or
 - 1.6 plants per month

This is why we use fossil energy!
- Most projections show that the percentage of fossil fuel use will stay relatively constant
 - We still have to build a lot of facilities!
 - Rapid building in China (1 plant completed per week!!!)
 - Construction prices have risen 25-30%
- Increased renewables will keep pace with increased energy use and only increase slightly as a percentage of the overall energy use

What Should Be Done?
- Define goals
 - Cost?
 - Environment?
 - National security?
 - Reduce dependence on unstable/unfriendly countries?
- Continue expanding renewable energy using economic judgment
 - How much extra are people willing to pay for fossil fuel alternatives?
- Make fossil fuel use as clean and efficient as possible
 - Rise in natural gas costs — home heating costs rise
 - Options for cleaner coal — IGCC, oxyfiring, CO₂ sequestration
 - Alternate liquid fuels — biodiesel, ethanol, coal-to-liquids, biomass-to-liquids
- Nuclear
 - Projected fuel shortage in ~30 years without breeder technology
 - Wastes from breeder technology much smaller
 - Handling large quantities of plutonium is a potential terrorist threat