

Occurrence of U • Very high-grade ore (Canada) - 20% U 200,000 ppm U • High-grade ore - 2% U, 20,000 ppm U • Low-grade ore - 0.1% U, 1,000 ppm U • Very low-grade ore* (Namibia) - 0.01% U 100 ppm U Granite 4-5 ppm U Sedimentary rock 2 ppm U • Earth's continental crust (av) 2.8 ppm U 0.003 ppm U

Seawater

Nuc	lear Units
1 Curie (Ci) =	3.7×10^{10} becquerel (Bq) (measures emission)
1 Gray (gy) =	1 J of absorbed energy per kg
1 rad =	0.01 gray (gy)
1 Sievert (Sv) =	Dose equivalent (J/kg, adjusted for type of radiation)
1 rem =	0.01 Sievert

Chernobyl Chain of Events

- Reactor test at low power setting (known to be unstable at these conditions) $% \left({{{\bf{n}}_{\rm{s}}}} \right)$
- Automatic shutdown systems disabled for test
- As coolant decreased, power increased Dramatic power surge occurred due to design of RBMK reactors
- Fuel elements ruptured
 - Resultant explosive force of steam lifted off the cover plate of the reactor
- Fission products released to atmosphere Second explosion threw out fragments of burning fuel and graphite from the core
 - Air rushed in, causing the graphite moderator to burst into flames Graphite burned for nine days (main cause of radioactive release to atmosphere)
- 12 x 1018 Bq of radioactivity was released
- - 5% of reactor core released to atmosphere 5000 tonnes of boron, dolomite, sand, clay and lead were dropped on to the burning core by helicopter

Nuclear Issues Briefing Paper 22 May 2007

- The Chernobyl accident in 1986 was the result of a flawed reactor design that was operated with inadequately trained personnel and without proper regard for safety.
- The resulting steam explosion and fire released at least five percent of the radioactive reactor core into the atmosphere and downwind.
- 28 people died within four months from radiation or thermal burns, 19 have subsequently died, and there have been around nine deaths from thyroid cancer apparently due to the accident: total 56 fatalities as of 2004.
- An authoritative UN report in 2000 concluded that there is no scientific evidence of any significant radiation-related health effects to most people exposed. This was confirmed in a very thorough 2005-06 study.

http://www.uic.com.au/nip22.htm

Dosages				
360 millirem (3.6 mSv)	Average annual U.S. dosage from ambient			
1 Sv, or 100 rem (short term dose)	Temporary radiation sickness			
10 Sv (1000 rem)	Fatal			
6-60 mSv (600 to 6000 mrem)	10-yr dose near Chernobyl			
5 Sv (500 rem)	Received by fatalities in a few days at Chernobyl			
3-4 Sv (300-400 rem)	Acute radiation sickness at Chernobyl			

So How Much Uranium Is There?

- Price dependent
 - Only low-cost, concentrated ore is now used
 - Doubling of price could yield 10-fold increase in amount
- http://www.uic.com.au/nip75.htm
 - 70 years without breeder reactors depends on price
- http://www.americanenergyindependence.com/uranium. html
- No worries we'll find more, just like oil
- 50 years, then breeder reactors will become "economical"
- Certainly breeder technology will extend life of nuclear fuel up to ~1000 years instead of ~50-70 years

Future Considerations

- Cost
- Supply (imports?)
- Waste Disposal & Plant Decommissioning
- Safety
- Security
- Importance of CO₂ emissions