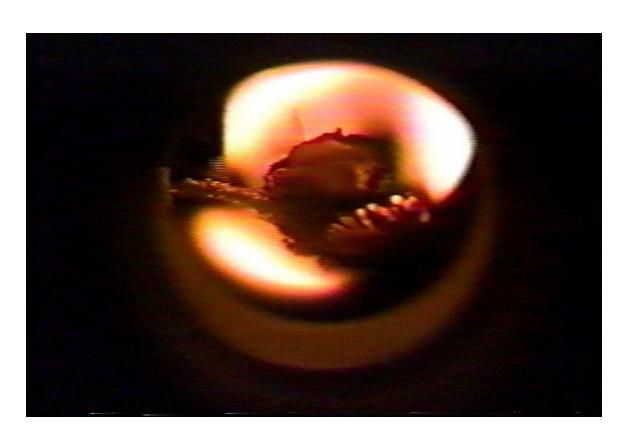


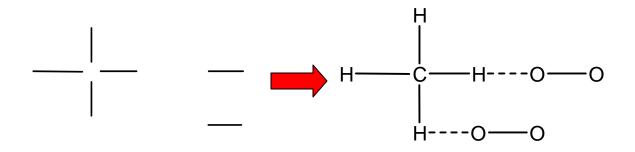
|     |                 |         |                                                         | Comb.   | Problem |
|-----|-----------------|---------|---------------------------------------------------------|---------|---------|
|     | Date            | Class # |                                                         | Lecture | Due     |
| Nov | 11              | 19 √    | Concepts, Candle, Fireplace, Premixed, Diffusion        | 1       |         |
|     |                 |         | Heats of Formation, Heats of Reaction, Heat Capacities, |         |         |
|     | 13              | 20 🗸    | Enthalpies                                              | 2       | #1      |
|     | 18              | 21 🗸    | Stoichiometry, Equilibrium Constants                    | 3       | #2,#3   |
|     |                 |         | Adiabatic Flame Temperature, Multi-Compo                |         |         |
|     | 20              | 22 🗸    | Equilibrium, NASA-Lewis Code                            | 4       | #4      |
|     | <mark>27</mark> |         | BYU Friday, NO Class Thanksgiving                       |         |         |
|     | <mark>29</mark> |         | Thanksgiving                                            |         |         |
| Dec | 2               | 25 √    | Heterogeneous                                           | 5       | #5      |
|     | 4               |         | NO <sub>X</sub> Mean of coot                            | 6       | #6      |
|     | 9               | 27      | S, Turbulence, Explosions                               | 7       | #7      |
|     | 11              | 2001    | N - W                                                   | 8       | #8      |


## **Combustion Kinetics**

Combustion Class 6

- Heterogeneous kinetics
  - Chemical reaction rate
  - Mass transfer rate
- Homogeneous kinetics
  - Importance of radicals
  - Examples
  - $-NO_{x}$

# Heterogeneous Kinetics


## **Board Discussion**



# Elementary Step Reactions

 How does the chemistry really happen?

$$CH_4 + 2O_2 \Rightarrow CO_2 + 2H_2O$$



??? Very unlikely!



# More Realistic Chemistry

$$CH_4 + OH \cdot \Rightarrow CH_3 \cdot + H_2O$$
  
 $H_2O \Rightarrow OH \cdot + H \cdot$   
 $CH_3 \cdot + O_2 \Rightarrow CH_3O \cdot + O \cdot$   
 $CH_3O \cdot \Rightarrow CH_2O + H \cdot$   
 $CH_2O + O \cdot \Rightarrow HCO \cdot + OH \cdot$   
 $HCO \cdot + OH \cdot \Rightarrow CO + H_2O$ 

etc....



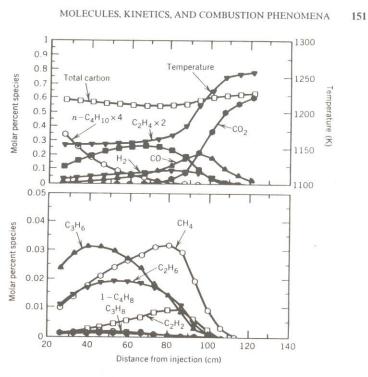
### **Bottom Line:**

- These <u>are</u> elementary steps
  - Chemistry happens!
- Lots of radical chemistry in flames
- High temperatures necessary to maintain radical pool
- This is why flames go out when cooled!

TABLE 2. The Westbrook and Dryer Comprehensive Mechanism for Methanol Oxidation

|      |                                                                             | Rate <sup>a</sup> |      |       |                                  |
|------|-----------------------------------------------------------------------------|-------------------|------|-------|----------------------------------|
|      | Reaction                                                                    | $\log A$          | n    | $E_a$ | Reference <sup>b</sup>           |
| .1   | $CH_3OH + M \rightarrow CH_3 + OH + M$                                      | 18.5              | 0    |       | This study                       |
| 1.2  | $CH_3OH + O_2 \rightarrow CH_2OH + HO_2$                                    | 13.6              | 0    | 50.9  | Aronowitz et al. (1978)          |
| 1.3  | CH <sub>2</sub> OH + OH → CH <sub>2</sub> OH + H <sub>2</sub> O             | 12.6              | 0    | 2.0   | This study                       |
| .4   | CH <sub>3</sub> OH + O → CH <sub>2</sub> OH + OH                            | 12.2              | 0    | 2.3   | LeFevre et al. (1972)            |
| 1.5  | CH <sub>2</sub> OH + H → CH <sub>2</sub> OH + H <sub>2</sub>                | 13.5              | 0    | 7.0   | This study                       |
| 2.6  | CH <sub>3</sub> OH + H → CH <sub>3</sub> + H <sub>2</sub> O                 | 12.7              | 0    | 5.3   | This study                       |
| 1.7  | CH <sub>3</sub> OH + CH <sub>3</sub> → CH <sub>2</sub> OH + CH <sub>4</sub> | 11.3              | 0    | 9.8   | Gray and Herod (1968)            |
| 2.8  | $CH_3OH + HO_2 \rightarrow CH_2OH + H_2O_2$                                 | 12.8              | 0    | 19.4  | Aronowitz et al. (1978)          |
| 2.9  | $CH_2OH + M \rightarrow CH_2O + H + M$                                      | 13.4              | 0    | 29.0  | This study                       |
|      | $CH_2OH + O_2 \rightarrow CH_2O + HO_2$                                     | 12.0              | 0    | 6.0   | Aronowitz et al. (1978)          |
| 11   | $CH_4 + M \rightarrow CH_3 + H + M$                                         | 17.1              | 0    | 88.4  | Hartig et al. (1971)             |
|      | $CH_4 + H \rightarrow CH_3 + H_2$                                           | 14.1              | 0    | 11.9  | Baldwin et al. (1970a)           |
| 113  | $CH_4 + OH \rightarrow CH_3 + H_2O$                                         | 3.5               | 3.08 | 2.0   | Zellner and Steinert (1976)      |
| 14   | $CH_4 + O \rightarrow CH_3 + OH$                                            | 13.2              | 0 '  | 9.2   | Herron (1969)                    |
| 115  | $CH_4 + HO_2 \rightarrow CH_3 + H_2O_2$                                     | 13.3              | 0    | 18.0  | Skinner et al. (1972)            |
| 116  | $CH_3 + HO_2 \rightarrow CH_3O + OH$                                        | 13.2              | 0    |       | Colket (1975)                    |
| 17   | $CH_3 + OH \rightarrow CH_2O + H_2$                                         | 12.6              | 0    |       | Fenimore (1969)                  |
| 110  | $CH_3 + OH \rightarrow CH_2O + H_2$                                         | 14.1              | 0    |       | Peeters and Mahnen (1973         |
| 2.10 | $CH_3 + O_2 \rightarrow CH_2O + O$ $CH_3 + O_2 \rightarrow CH_2O + O$       | 13.4              | 0    |       | Brabbs and Brokaw (1975)         |
| 2.19 | $CH_3 + O_2 \rightarrow CH_2O + O$<br>$CH_2O + CH_3 \rightarrow CH_4 + HCO$ | 10.0              | 0.5  |       | Tunder et al.                    |
| 2.20 | $CH_2O + CH_3 \rightarrow CH_4 + HCO$<br>$CH_3 + HCO \rightarrow CH_4 + CO$ | 11.5              | 0.5  |       | Tunder et al.                    |
| 2.21 | $CH_3 + HCO \rightarrow CH_4 + CO$ $CH_3 + HO_2 \rightarrow CH_4 + O_2$     | 12.0              | 0    |       | Skinner et al. (1972)            |
|      |                                                                             | 13.7              | 0    |       | Brabbs and Brokaw (1975)         |
|      | $CH_3O + M \rightarrow CH_2O + H + M$                                       | 12.0              | 0    |       | Engleman (1976)                  |
|      | $CH_3O + O_2 \rightarrow CH_2O + HO_2$                                      | 16.7              | 0    |       | Schecker and Jost (1969)         |
| 2.23 | $CH_2O + M \rightarrow HCO + H + M$                                         | 14.7              | 0    |       | Bowman (1975)                    |
|      | $CH_2O + OH \rightarrow HCO + H_2O$                                         | 12.6              | 0    |       | Westenberg and deHaas            |
|      | CH <sub>2</sub> O + H → HCO + H <sub>3</sub>                                | 12.0              |      |       | (1972a)                          |
| 2.28 | $CH_2O + O \rightarrow HCO + OH$                                            | 13.7              | 0    |       | Bowman (1975)                    |
| 2.29 | $CH_2O + HO_2 \rightarrow HCO + H_2O_2$                                     | 12.0              | 0    |       | Lloyd (1974)                     |
|      | $HCO + OH \rightarrow CO + H_2O$                                            | 14.0              | 0    | 0.0   | Bowman (1970)                    |
| 2.31 | $HCO + M \rightarrow H + CO + M$                                            | 14.2              | 0    | 19.0  | Westbrook et al. (1977)          |
| 2.32 | $HCO + H \rightarrow CO + H_2$                                              | 14.3              | 0    |       | Niki et al. (1969)               |
|      | $HCO + O \rightarrow CO + OH$                                               | 14.0              | 0    | 0.0   | Westenberg and deHaas<br>(1972b) |
| 2 34 | HCO + HO <sub>2</sub> → CH <sub>2</sub> O + O <sub>2</sub>                  | 14.0              | 0    | 3.0   | Baldwin and Walker (1973         |
|      | $HCO + O_2 \rightarrow CO + HO_2$                                           | 12.5              | 0    | 7.0   | Westbrook et al. (1977)          |
|      | $CO + OH \rightarrow CO_2 + H$                                              | 7.1               | 1.3  | -0.8  | Baulch and Drysdale (197-        |
|      | $CO + HO_2 \rightarrow CO_2 + OH$                                           | 14.0              | 0    |       | Baldwin et al. (1970b)           |
|      | $CO + DO_2 + CO_2 + M$                                                      | 15.8              | 0    |       | Simonaitis and Heicklen (1972)   |
| 2 30 | $O CO_2 + O \rightarrow CO + O_2$                                           | 12.4              | 0    | 43.8  | Gardiner et al. (1971)           |
|      | $0 \text{ H} + O_2 \rightarrow 0 + OH$                                      | 14.3              | 0    |       | Baulch et al. (1973a)            |
|      | $H_2 + O_2 \rightarrow O + OH$<br>$H_2 + O \rightarrow H + OH$              | 10.3              | 1    |       | Baulch et al. (1973b)            |
|      | $! H_2O + O \rightarrow OH + OH$                                            | 13.5              | 0    |       | Baulch et al. (1973b)            |
|      |                                                                             |                   | W    | 30.57 | management and service of        |

TABLE 2. (Continued)


|      | Reaction                                                                    | log A | n    | $E_a$ | Reference <sup>b</sup>              |
|------|-----------------------------------------------------------------------------|-------|------|-------|-------------------------------------|
| 2.44 | $H_2O_2 + OH \rightarrow H_2O + HO_2$                                       | 13.0  | 0    | 1.8   | Baulch et al. (1973b)               |
| 2.45 | $H_2O + M \rightarrow H + OH + M$                                           | 16.3  | 0    | 105.1 | Baulch et al. (1973b)               |
| 2.46 | $H + O_2 + M \rightarrow HO_2 + M$                                          | 15.2  | 0    | -1.0  | Baulch et al. (1973b)               |
| 2.47 | $HO_2 + O \rightarrow OH + O_2$                                             | 13.7  | 0    | 1.0   | Lloyd (1974)                        |
|      | $HO_2 + H \rightarrow OH + OH$                                              | 14.4  | 0    | 1.9   | Baulch et al. (1973b)               |
|      | $HO_2 + H \rightarrow H_2 + O_2$                                            | 13.4  | 0    | 0.7   | Baulch et al. (1973b)               |
|      | $HO_2 + OH \rightarrow H_2O + O_2$                                          | 13.7  | 0    | 1.0   | Lloyd (1974)                        |
|      | $H_2O_2 + O_2 \rightarrow HO_2 + HO_2$                                      | 13.6  | 0    | 42.6  | Lloyd (1974)                        |
|      | $H_2O_2 + M \rightarrow OH + OH + M$                                        | 17.1  | 0    | 45.5  | Baulch et al. (1973b)               |
|      | $H_2O_2 + H \rightarrow HO_2 + H_2$                                         | 12.2  | 0    |       | Baulch et al. (1973b)               |
|      | $O + H + M \rightarrow OH + M$                                              | 16.0  | 0    | 0.0   | Moretti (1965)                      |
|      | $O_2 + M \rightarrow O + O + M$                                             | 15.7  | 0    |       | Jenkins et al. (1967)               |
|      | $H_2 + M \rightarrow H + H + M$                                             | 14.3  | 0    |       | Baulch et al. (1973b)               |
|      | $C_2H_6 \rightarrow CH_3 + CH_3$                                            | 19.4  | -1   |       | Pacey (1973)                        |
|      | $C_2H_6 + CH_3 \rightarrow C_2H_5 + CH_4$                                   | -0.3  | 4    |       | Clark and Dove (1973)               |
|      | $C_2H_6 + H \rightarrow C_2H_5 + H_2$                                       | 2.7   | 3.5  |       | Clark and Dove (1973)               |
|      | $C_2H_6 + OH \rightarrow C_2H_5 + H_2O$                                     | 13.8  | 0    |       | Greiner (1970)                      |
|      | $C_2H_6 + O \rightarrow C_2H_5 + OH$                                        | 13.4  | 0    |       | Herron and Huie (1973)              |
|      | $C_2H_5 \rightarrow C_2H_4 + H$                                             | 13.6  | 0    |       | Lin and Back (1966)                 |
|      | $C_2H_5 + O_2 \rightarrow C_2H_4 + HO_2$                                    | 12.0  | 0    |       | Cooke and Williams (1971)           |
|      | $C_2H_5 + C_2H_3 \rightarrow C_2H_4 + C_2H_4$                               | 17.5  | 0    |       | Benson and Haugen (1967)            |
|      | $C_2H_4 + O \rightarrow CH_3 + HCO$                                         | 13.0  | 0    |       | David et al. (1972)                 |
|      | $C_2H_4 + M \rightarrow C_2H_3 + H + M$                                     | 17.6  | 0    |       | Just et al. (1977)                  |
|      | $C_2H_4 + H \rightarrow C_2H_3 + H_2$                                       | 13.8  | 0    |       | Benson and Haugen (1967)            |
|      | $C_2H_4 + OH \rightarrow C_2H_3 + H_2O$                                     | 14.0  | 0    |       | Baldwin et al. (1966)               |
|      | $C_2H_4 + O \rightarrow CH_2O + CH_2$                                       | 13.4  | 0    |       | Peeters and Mahnen (1973)           |
|      | $C_2H_4 + M \rightarrow C_2H_2 + H + M$                                     | 16.5  | 0    | 14.00 | Benson and Haugen (1967)            |
|      | $C_2H_2 + M \rightarrow C_2H_2 + H + M$                                     | 14.0  | 0    |       | Jachimowski (1977)                  |
|      | $C_2H_2 + O_2 \rightarrow HCO + HCO$                                        | 12.6  | 0    |       | Gardiner and Walker (1968           |
|      | $C_2H_2 + G_2 \rightarrow HCO + HCO$<br>$C_2H_2 + H \rightarrow C_2H + H_2$ | 14.3  | 0    |       | Browne et al. (1969)                |
|      | $C_2H_2 + OH \rightarrow C_2H + H_2O$                                       | 12.8  | 0    |       | Vandooren and Van Tiggele<br>(1977) |
| 2.75 | $C_2H_2 + O \rightarrow C_2H + OH$                                          | 15.5  | -0.6 | 17.0  | Browne et al. (1969)                |
|      | $C_2H_2 + O \rightarrow CH_2 + CO$                                          | 13.8  | 0    |       | Vandooren and Van Tiggele<br>(1977) |
| 2.77 | $C_2H + O_2 \rightarrow HCO + CO$                                           | 13.0  | 0    | 7.0   | Browne et al. (1969)                |
|      | $C_2H + O \rightarrow CO + CH$                                              | 13.7  | 0    |       | Browne et al. (1969)                |
|      | $CH_2 + O_2 \rightarrow HCO + OH$                                           | 14.0  | 0    |       | Benson and Haugen (1967)            |
|      | $CH_2 + O \rightarrow CH + OH$                                              | 11.3  | 0.68 |       | Mayer et al. (1967)                 |
|      | $CH_2 + H \rightarrow CH + H_2$                                             | 11.4  | 0.67 |       | Mayer et al. (1967)                 |
|      | $CH_2 + OH \rightarrow CH + H_2O$                                           | 11.4  | 0.67 |       | Peeters and Vinckier (1975)         |
|      | $CH + O_2 \rightarrow CO + OH$                                              | 11.1  | 0.67 |       | Peeters and Vinckier (1975)         |
|      | $CH + O_2 \rightarrow HCO + O$                                              | 13.0  | 0    |       | Jachimowski (1977)                  |

From Ref. 86. Reprinted with permission from Gordon and Breach Science Publishers S. A. Units are cm-mol-s-kcal.  $k = AT^n \exp(-Ea/rT)$ 

<sup>\*</sup>References refer to sources noted in the original article.

### **Detailed Premixed Flame Measurements**

### A. Propane/Air



**FIGURE 11.** Species evolution for the reaction of *n*-butane and oxygen as a function of reaction distance. Data are from the Princeton Flow Reactor, for an initial equivalence ratio of 0.80, an initial reaction temperature of 1155 K, and atmospheric pressure. A distance of 1.0 cm corresponds to approximately 0.67 msec of reaction time. Figure from Ref. 54.

### B. Butane/Air

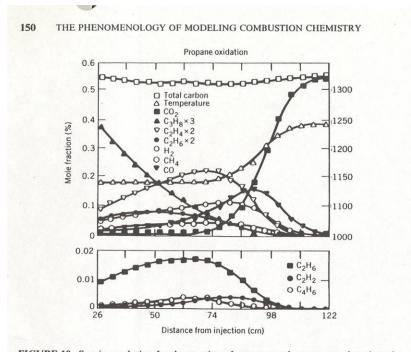



FIGURE 10. Species evolution for the reaction of propane and oxygen as a function of reaction distance. Data are from the Princeton Flow Reactor, for an initial equivalence ratio of 0.82, an initial reaction temperature of 1138 K, and atmospheric pressure. A distance of 1.0 cm corresponds to approximately 0.90 msec of reaction time. Figure from Ref. 53.

From F. L. Dryer, "The Phenomenology of Modeling Combustion Chemistry," in *Fossil Fuel Combustion:* A Source Book, edited by W. Bartok and A. F. Sarofim, John Wiley & Sons, New York (1991).

#### Global & Simplified Kinetic Expressions

$$C_n H_{2(n+1)} + \frac{2(n+1)}{2} O_2 \to (n+1) H_2 O + nCO$$
 (67)

$$CO + \frac{1}{2}O_2 = CO_2$$
 (68)

TABLE 7. Parameters for Two-Step Reaction Mechanism, Giving Best Agreement between Experimental and Computed Flammability Limits<sup>a</sup>

| Fuel                             | A                           | $E_a$ | а    | b    |
|----------------------------------|-----------------------------|-------|------|------|
| CH₄                              | $^{-}2.8 \times 10^{\circ}$ | 48.4  | -0.3 | 1.3  |
| CH <sub>4</sub>                  | $1.5 \times 10^{7}$         | 30.0  | -0.3 | 1.3  |
| $C_2H_6$                         | $1.3 \times 10^{12}$        | 30.0  | 0.1  | 1.65 |
| $C_3H_8$                         | $1.0 \times 10^{12}$        | 30.0  | 0.1  | 1.65 |
| $C_4H_{10}$                      | $8.8 \times 10^{11}$        | 30.0  | 0.15 | 1.6  |
| C <sub>5</sub> H <sub>12</sub>   | $7.8 \times 10^{11}$        | 30.0  | 0.25 | 1.5  |
| C <sub>6</sub> H <sub>14</sub>   | $7.0 \times 10^{11}$        | 30.0  | 0.25 | 1.5  |
| C <sub>7</sub> H <sub>16</sub>   | $6.3 \times 10^{11}$        | 30.0  | 0.25 | 1.5  |
| C <sub>8</sub> H <sub>18</sub>   | $5.7 \times 10^{11}$        | 30.0  | 0.25 | 1.5  |
| C <sub>8</sub> H <sub>18</sub>   | $9.6 \times 10^{12}$        | 40.0  | 0.25 | 1.5  |
| C9H20                            | $5.2 \times 10^{11}$        | 30.0  | 0.25 | 1.5  |
| $C_{10}H_{22}$                   | $4.7 \times 10^{11}$        | 30.0  | 0.25 | 1.5  |
| CH <sub>3</sub> OH               | $3.7 \times 10^{12}$        | 30.0  | 0.25 | 1.5  |
| C <sub>2</sub> H <sub>5</sub> OH | $1.8 \times 10^{12}$        | 30.0  | 0.15 | 1.6  |
| C <sub>6</sub> H <sub>6</sub>    | $2.4 \times 10^{11}$        | 30.0  | -0.1 | 1.85 |
| $C_7H_8$                         | $1.9 \times 10^{11}$        | 30.0  | -0.1 | 1.85 |

From Ref. 139. Reprinted with permission from Gordon and Breach Science Publishers S. A. "Same units as in Table 6.

TABLE 8. Summary of the Modified Four-Step, Reversible Mechanism for Laminar Flames of Propane and Air

$$\begin{array}{c} 2C_{3}H_{8} \rightarrow 3C_{2}H_{4} + 2H_{2} \\ C_{2}H_{4} + O_{2} \rightarrow 2H_{2} + 2CO \\ 2CO + O_{2} \rightarrow 2CO_{2} \\ 2H_{2} + O_{2} \rightarrow 2H_{2}O \\ 3C_{2}H_{4} + 2H_{2} \rightarrow 2C_{3}H_{8} \\ 2H_{2} + 2CO \rightarrow C_{2}H_{4} + O_{2} \\ 2CO_{2} \rightarrow 2CO + O_{2} \\ 2H_{2}O \rightarrow 2H_{2} + O_{2} \end{array}$$

With rate expressions:

$$R_1 = f_1(P)2.089 \times 10^{17} \exp(-49,600/RT) [C_3H_8]^{0.50} [O_2]^{1.07} [C_2H_4]^{0.40}$$

$$R_2 = f_2(P)2 \times 10^{13} \exp(-50,000/RT) [C_2H_4]^{0.90} [O_2]^{1.18} [C_3H_8]^{-0.37}$$

$$R_3 = S(\phi)1.5 \times 10^{13} \exp(-40,000/RT)[CO]^{1.0}[O_2]^{0.25}[H_2O]^{0.50}$$

$$R_4 = 3.311 \times 10^{13} \exp(-38,100/RT)[H_2]^{0.85}[O_2]^{1.42}[C_2H_4]^{-0.56}$$

$$R_5 = 4.920 \times 10^8 \exp(-49,600/RT) [C_3 H_8]^{0.127} [O_2]^{1.07} [C_2 H_4]^{0.40}$$

$$R_6 = 2.25 \times 10^9 \exp(-50.000/RT)[C_2 H_4]^{0.528}[O_2]^{1.18}[C_3 H_8]^{-0.37}$$

$$R_7 = 4.16 \times 10^{16} T^{-1/2} \exp(-106,950/RT) [\text{CO}_2]^{1.0} [\text{O}_2]^{-0.25} [\text{H}_2\text{O}]^{0.50}$$

$$R_8 = 6.12 \times 10^{15} T^{-1/2} \exp(-100,586/RT) [\mathrm{H_2}]^{-0.153} [\mathrm{O_2}]^{0.916} [\mathrm{C_2H_4}]^{-0.563} [\mathrm{H_2O}]^{1.0},$$

where

$$f_1(P) = 6.434P^{-0.8116}$$

$$f_2(P) = 1.115 - 1.125e^{-0.251}$$

$$S(\phi) = \min[1.0, 16.0 \exp(-2.48\phi)]$$

From Ref. 166. Reprinted with permission from Gordon and Breach Science Publishers S. A.

From F. L. Dryer, "The Phenomenology of Modeling Combustion Chemistry," in *Fossil Fuel Combustion: A Source Book*, edited by W. Bartok and A. F. Sarofim, John Wiley & Sons, New York (1991).

# NO<sub>x</sub> (Nitrogen Oxides from Combustion)

#### A. Thermal NO<sub>x</sub>

- $N_2 + O_2 \rightarrow 2NO$  (involves N, O, and OH radicals)
- · Nitrogen and oxygen only, no other major species
- Dominant source of NO<sub>x</sub> in gaseous hydrocarbon combustion (methane, etc.)

#### B. Fuel NO<sub>x</sub>

- Nitrogen in fuel → NO, NO<sub>2</sub> and N<sub>2</sub>O
- Example: pyridine combustion (
   ()), coal combustion
- Dominant source of NO<sub>x</sub> in coal combustion

#### C. Prompt NO<sub>x</sub>

- CH or CH<sub>2</sub> + N<sub>2</sub>  $\rightarrow$  HCN  $\rightarrow$  NO, etc.
- Hard to quantify because radical concentrations are generally unknown
- · Not usually a dominant source of NO<sub>x</sub> in combustion

#### 242 CHEMISTRY OF GASEOUS POLLUTANT FORMATION AND DESTRUCTION

FUEL-NITROGEN MECHANISM

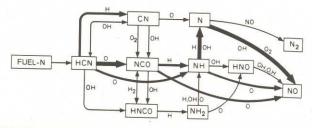



FIGURE 12. Schematic diagram of the principal reaction paths in the fuel nitrogen conversion process in flames.

233

| Reaction<br>Number | Reaction                     | A       | В   | C(K)    |  |
|--------------------|------------------------------|---------|-----|---------|--|
| 18                 | $O + N_2 \rightarrow NO + N$ | 1.8(11) | 0   | 38.4(3) |  |
| -19                | $O + NO \rightarrow N + O_2$ | 3.8(6)  | 1.0 | 20.8(3) |  |
| -20                | $H + NO \rightarrow OH + N$  | 2.6(11) | 0   | 25.4(3) |  |

<sup>&</sup>quot;From Hanson and Salimian." Units: kgmol, m', K, sec;  $k = AT^{\theta} \exp(-C/T)$ .

#### 3.1. Thermal NO Formation

The three principal reactions that comprise the thermal NO formation mechanism are

$$O + N$$
,  $\rightleftharpoons NO + N$  (18)

$$N + O_2 \rightleftharpoons NO + O \tag{19}$$

$$N + OH \rightleftharpoons NO + H$$
 (20)

The rate coefficients for both the forward and reverse reactions have been measured over a wide temperature range (Table 10).26

Invoking a steady-state approximation for the N-atom concentration\* and assuming that reaction (9) is partially equilibrated, the NO formation rate due to the thermal mechanism may be expressed,

$$\frac{d(NO)}{dt} = 2k_{11}(O)(N_2)\frac{1 - (NO)^2/K(O_2)(N_2)}{1 + k_{-18}(NO)/[k_{19}(O_2) + k_{20}(OH)]}$$
(21)

where  $K = (k_{18}/k_{-18})$   $(k_{19}/k_{-19})$  – equilibrium constant for the reaction  $N_2 + O_2 \rightleftharpoons 2NO$ . Calculation of the NO formation rate requires values of the local temperature and the local concentrations of  $O_2$ ,  $N_2$ ,  $O_3$  and OH.

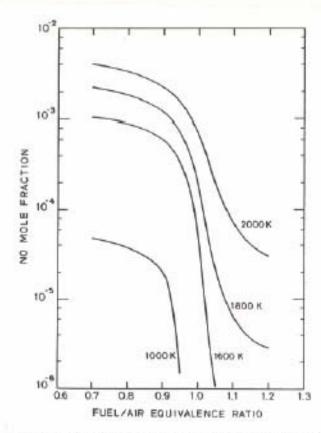



FIGURE 5. Equilibrium NO mole fractions for premixed methane-air combustion at a pressure of 1 atm.

From F. L. Dryer, "The Phenomenology of Modeling Combustion Chemistry," in Fossil Fuel Combustion: A Source Book, edited by W. Bartok and A. F. Sarofim, John Wiley & Sons, New York (1991).

## **FATE OF NITROGEN OXIDES IN THE ATMOSPHERE** $NO + O_3 \rightarrow NO_2 + O_2$ $0_2 + hv \rightarrow 0 + 0$ Ozone Layer $NO_2 + O \rightarrow NO + O_2$ 0+02 M 03 $0 + 0_3 \rightarrow 0_2 + 0_2$ Stratosphere 25 Km ULTRAVIOLET SUNLIGHT ENERGY $N_2O$ PRODUCT 02 $\tau \sim 100 \text{ yrs}$ Troposphere AIR(O,) ١R Radiation AIR (O2)