
Final Exam

- Wednesday, Dec. 17, 7 am to 10 am
- Closed Book, Closed Notes
- Combustion Terms
 - From the sheet on the "pre-test"
- Short Answers
 - Describe this, how does this work, etc.
- Problems
 - Like the homework
 - Basis for solid fuels (daf?), oxygen demand, etc.
 - Bring a calculator!!
- I am aiming for 1-2 hours (not 3!)
 - Come at 7 am anyway

Outline

- 1. Flammability Limits
- 2. Flame Speeds
 - Flashback
 - Laminar vs. Turbulent
- 3. Explosions
 - Deflagration vs. Detonation
- 4. Pepcon video
- 5. Lab demos

1. Flammability Limits

(from Lewis and von Elbe, 1987)

- Measured in premixed gases
- Fuel Rich limit
- Fuel Lean limit
- Effects of diluents (see figure at left)
- Also functions of pressure
- Must be measured

Flammability Limits

(in air at 1 atm total pressure)

Species	Lean (ø)	Rich (φ)		
Acetylene	0.19	∞		
Carbon Monoxide	0.34	6.76		
Methane	0.46	1.64		
Methanol	0.48	4.08		
Ethane	0.50	2.72		
Ethylene	0.41	6.1		
Hydrogen	0.14	2.54		
Propane	0.51	2.83		
n-Decane	0.36	3.92		
n-Octane	0.51	4.25		
(urns n 236)				

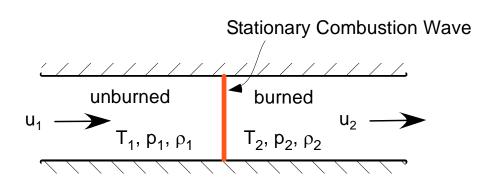
(from Turns, p. 236)

Hydrocarbon	Formula	Higher Heating Value (vapor), Btu lb _m ⁻¹	Theor. Air/fuel Ratio, by mass	Max Flame Speed, (ft s ⁻¹)	Adiabatic Flame Temp (in air) (°F)	bit off!	nition Temp (in air) (°F)	Flash Point (°F)	Limits	ability (in air) volume)
				Paraffins or A	Ikanes					
Methane	CH	23875	17,195	1.1	3484	ittle	1301	Gas	5.0	15.0
Ethane	CH.	22323	15,899	1.3	3540	Ħ	968-1166	Gas	3.0	12.5
Propane	C,H,	21669	15.246	1.3	3573		\$71	Gas	2.1	10.1
-Butane	C ₄ H ₁₀	21321	14.984	1.2	3583	g	761	-76	1.86	8.41
so-Butane	C_4H_{10}	21271	14.984	1.2	3583		864	-117	1.80	8.44
-Pentane	C.H.2	21095	15.323	1.3	4050	are	588	< -40	1.40	7.80
iso-Pentane	C.H.2	21047	15.323	1.2	4055	S	788	< -60	1,32	9.16
Neopentane	C5H12	20978	15.323	1.1	4060		842	Gas	1.38	7.22
n-Hexane	C ₆ H ₁₄	20966	15.238	1.3	4030	E	478	-7	1.25	7.0
Neohexane	$C_{6}H_{14}$	20931	15.238	1.2	4055	tu	797	-54	1.19	7.58
-Heptane	C2H10	20854	15.141	1.3	3985	M	433	25	1.00	6.00
Triptane	C.H.	20824	15.151	1.2	4035	ā	849		1.08	6.69
n-Octane	C ₈ H ₁₈	20796	15.093			ŏ	428	56	0.95	3.20
iso-Octane	C_8H_{18}	20770	15.093	1.1		mperature	837	10	0.79	5.94
				Olefins or A	lkenes	te				
Ethylene	C_2H_4	21636	14.807	2.2	4250		914	Gas	2.75	28.6
Propylene	C.H.	21048	14.807	1.4	4090	Ψ	856	Gas	2.00	11.1
Butylene	C.H.	20854	14.807	1.4	4030	me	829	Gas	1.98	9.65
iso-Bulene	C.H.s	20737	14,807	1.2		σ	869	Gas	1.8	9.0
n-Pentene	C_2H_{10}	20720	14.807	1.4	4165	Ŧ	569	_	1.65	7.70
				Aromati	cs	batic				
Benzene	C ₄ H ₆	18184	13.297	1.3	4110	Ø	1044	12	1.35	6.65
Toluene	C-H ₈	18501	13.503	1.2	4050	Q	997	40	1.27	6.75
o-Xylene	$C_8 H_{10}$	18663	13.663	- <u>1</u>	4010	dial	867	63	1.00	6.00
				Other Hydroe	earbons	ad				
Acetylene	C ₂ H ₂	21502	13.297	4.6	4770	Ð	763-824	Gas	2.50	81
Naphthalene	C ₁₀ H _a	17303	12.932		4100	Se	959	174	0.90	5.9

(from The John Zink Combustion Handbook, 2001, p. 45)

Note: Based largely on: "Gas Engineers' Handbook", American Gas Association, Inc., Industrial Prese 1967. For heating value in J kg⁻¹, multiply the value in Btu $1b_{s}^{-1}$ by 2324. For flame speed in m s⁻¹, multiply the value in ft s⁻¹ by 0.3048.

REFERENCES


American Institute of Physics Handbook, 2nd ed., D.E. Gray, Ed., McGraw-Hill Book Company, 19 Chemical Engineers' Handbook, 4th ed., R.H. Perry, C.H. Chilton, and S.D. Kirkpatrick, Eds., McC Handbook of Chemistry and Physics, 53rd ed., R.C. Weast, Ed., The Chemical Rubber Company, 197 Handbook of Laboratory Sufery, 2nd ed., N.V. Steere, Ed., The Chemical Rubber Company, 1971. Physical Measurements in Gas Dynamics and Combustion, Princeton University Press, 1954.

Company, 1963

Đ

is the heat of combustion of 500 organic compounds.

2. Flame Speeds

- Usually measured at stoichiometric conditions (φ = 1.0)
- Premixed gases
- Refers to velocity of unburned gas (u₁)
- Must be measured

Hydrocarbon	Formula	Higher Heating Value (vapor), Btu lb _m ⁻¹	Theor. Air/fuel Ratio, by mass	Max Flame Speed, (ft s ⁻¹)	(in sir)	(in air) ('F)	Flash Point (°F)	Limits	ability (in air) volume)
				Paraffins or A	Henry				
Methane	CH4	23875	17.195	1.1	3484	1301 968-1166 \$71	Gas	5.0	15.0
Ethane	C ₂ H ₆	22323	15.899	1.3	3540	968-1166	Gas	3.0	12.5
Propane	C,H,	21669	15.246	1.3	3573	871	Gas	2.1	10.1
-Butane	C_H ₁₀	21321	14.984	1.2	3583	761	-76	1.86	8.4
so-Butane	C_4H_{10}	21271	14.984	1.2	0.000	10 × 1	-117	1.80	8.4
n-Pentane	C ₅ H ₁₂		oomol	1.3	4050	0 ⁸⁶⁴ 0 588	< -40	1.40	7.8
iso-Pentane	C,H12	All the	same!	1.2	1055	700	< -60	1.32	9.1
Neopentane	C _s H ₁₂	20978	12,242	1.1	4060	842	Gas	1.38	7.2
n-Hexane	C ₆ H ₁₄	20966	15.238	1.3	4030	478	-7	1.25	7.0
Neohexane	C_6H_{14}	20931	15.238	1.2	4055	797	-54	1.19	7.5
-Heptane	C2H16	20854	15.141	1.3	3985	433	25	1.00	6.0
Triptane	C ₂ H ₁₀	20824	15.151	1.2	4035	849	-	1.08	6.6
n-Octane	C ₈ H ₁₈	20796	15.093			428	56	0.95	3.2
iso-Octane	$C_{s}H_{18}$	20770	15.093	1.1		837	10	0.79	5.9
				Clems or Al	kenes	478 797 433 449 428 428 837			
Ethylene	C ₋ H ₊	21636	14.807	2.2			Gas	2.75	28.6
Propylene	C.H.	21048	14.807	1.4	4090	\$56	Gas	2.00	11.1
Butylene	C.H.	20854	14.807	1.4	4030	829	Gas	1.98	9.6
iso-Butene	C.H ₈	20737	14,807	1.2		869	Gas	1.8	9.0
n-Pentene	$C_{\pm}H_{10}$	20720	14.807	1.4	4165	914 856 829 869 569		1.65	7.7
				Aronati	cs	01100 1044 997			
Benzene	C ₄ H ₆	18184	13.297	1.3	4110	U 1044	12	1.35	6.6
Toluene	C-Ha	18501	13.503	1.2	4050	997	40	1.27	6.7
p-Xylene	$C_8 \hat{H}_{10}$	18663	13.663	-	4010	867	63	1.00	6.0
				Other Hydrod	arbons	90			
Acetylene	C ₂ H ₂	21502	13.297	4.6		D 763-824	Gas	2.50	81
Naphthalene	C ₁₀ H _a	17303	12.932		4100	959	174	0.90	5.9

(from In Air Zink Combustion Handbook, 2001, p. 45)

REFERENCES

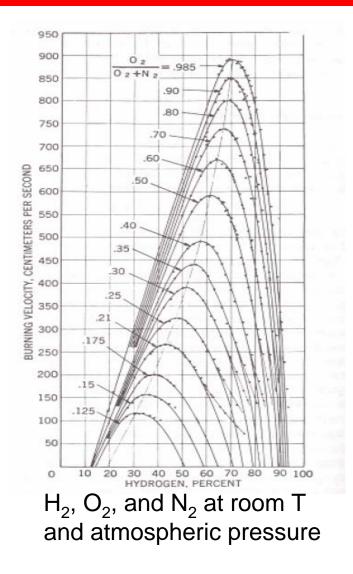
American Institute of Physics Ha Chemical Engineers' Handbook, Handbook of Chemistry and Phys

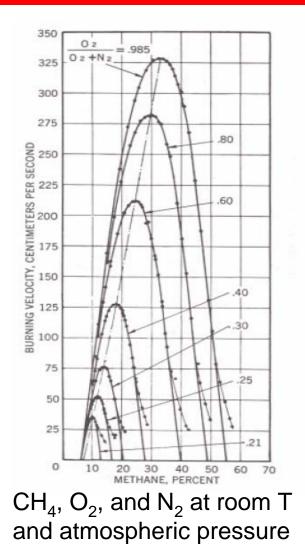
TTA TO 1

1.1 ft/s = 33 cm/s = 0.3 m/s

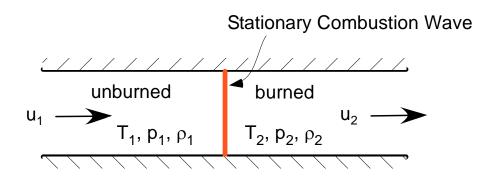
ompany, 19 Eds., McC mpany, 197

Contract of the set of


Φ

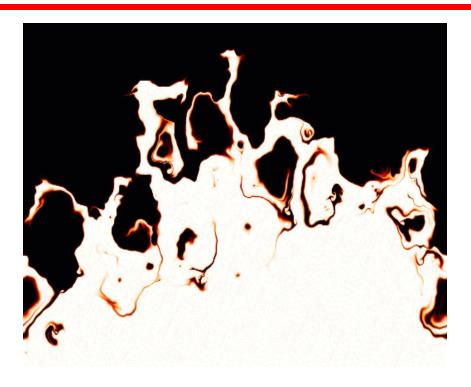

s the heat of combustion of 500 organic compounds.

Handbook of Laboratory Safery, 2nd ed., N.V. Steere, Ed., The Chemical Rubber Company, 1971 Physical Measurements in Gas Dynamics and Combustion, Princeton University Press, 1954.


Laminar Premixed Flame Speeds

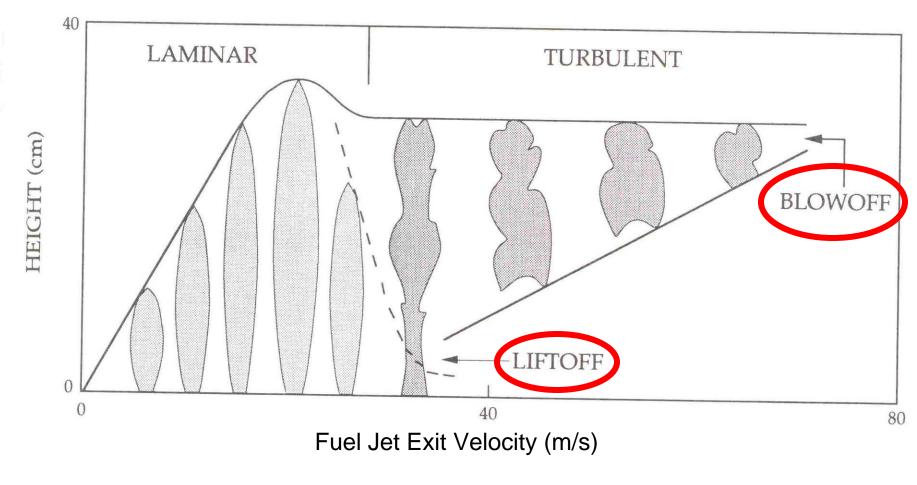
(from Lewis and von Elbe, 1987, pp. 396, 401)

Flame Speeds (cont.)


- Flashback: when u₁ < S_L (flame travels upstream)
- If u₁ > S_L, flashback is not possible!
- Refers to unburned gas velocity (u₁)
- Must get correct S_L (correct concentrations, pressure, temperature, etc.)
- Most fuels similar, except C₂H₂, C₂H₄, and H₂

Turbulent Flame Speeds (S_t)

- Dependent on the turbulent fluctuation velocity (v'_rms)
- Depends on strength of recirculation, geometry, etc.
- Can be much higher than laminar flame speed (S_L)


Why is $S_t > S_L$?

Movies: <u>http://flash.uchicago.edu/~nata/combustion/</u>

- S_L depends on molecular diffusion of heat and radicals
 - relatively slow
- S_t depends on turbulent mixing of heat and radicals
 - can be much faster than molecular diffusion
- Greater surface area between burned and unburned in turbulent eddies

Effects of Turbulence on a Gaseous <u>Diffusion</u> Flame

(from Glassman, Combustion, 1977, p. 285)

Effects of Turbulence on Flames

A. Turbulent diffusion flames

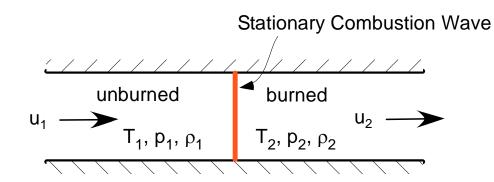
- Enhanced mixing rate of oxidizer and fuel
- Enhanced surface area of flame (wrinkled)
- Higher heat release per unit volume

B. Premixed flames

- Enhanced mixing rate of combustion products with reactants
 - Heat
 - Radical species

3. Explosions

- **Explosion** Rapid expansion due to reaction (something blew up). Not really a technical term
- **Deflagration** Combustion at subsonic speeds
- **Conflagration** Large disastrous fire (may also mean a conflict or war)
- **Detonation** Combustion at supersonic speeds (includes shock wave)

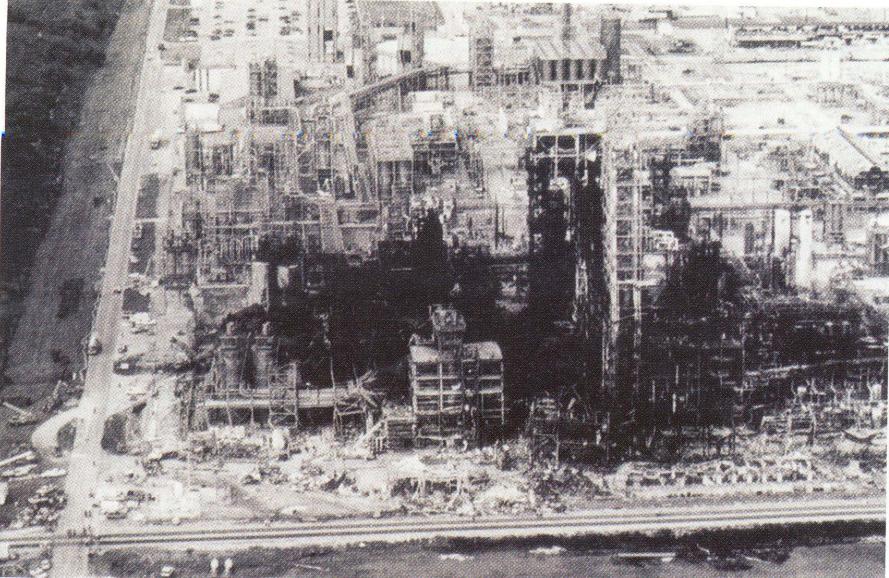

Examples:

- Combustion of mixture in a tube with one or both ends open leads to <u>deflagration</u>.
- Combustion of mixture in closed vessel may lead to a <u>detonation</u> if the flame speed is high enough. The combustion wave follows the shock (pressure) wave.

How Do You Get A Detonation?

- Enormous energy release per unit volume
 - Short time
 - Small space
 - A firecracker does not detonate
 - Most bombs do not cause detonations

Detonation vs. Deflagration in Gases


	Detonation	Deflagration
u ₁ /c ₁	5 to 10	0.0001 to 0.03
u ₂ /u ₁	0.4 to 0.7	4 to 6
	(deceleration)	(acceleration)
p ₂ /p ₁	13 to 55 (compression)	~0.98 (slight expansion)
	(compression)	
T_2/T_1	0 to 21	4 to 16
	(heat addition)	(heat addition)
ρ_2/ρ_1	1.7 to 2.6	0.06 to 0.25

Ethylene oxide plant explosion caused by autoignition

From John Zink Combustion Handbook

Refinery damage due to improper maintenance procedures

From John Zink Combustion Handbook