Class 4 **Dynamic Process Behavior**

Understanding Dynamic Process Behavior

- · To learn about the dynamic behavior of a process, analyze measured process variable test data
- · Process variable test data can be generated by suddenly changing the controller output signal
- · Be sure to move the controller output far enough and fast enough so that the dynamic behavior of the process is clearly revealed as the process responds
- The dynamic behavior of a process is different as operating level changes (nonlinear behavior) so collect process data at normal operating levels (design level of operation)

Modeling Dynamic Process Behavior

- The best way to understand process data is through modeling
- Modeling means fitting a first order plus dead time (FOPDT) dynamic process model to the data set:

$$\tau_P \frac{dy(t)}{dt} + y(t) = K_P u(t - \theta_P)$$

where:

y(t) is the measured process variable u(t) is the controller output signal

• The FOPDT model is low order and linear so it can only approximate the behavior of real processes

Modeling Dynamic Process Behavior

• When a first order plus dead time (FOPDT) model is fit to dynamic process data

$$\tau_P \frac{dy(t)}{dt} + y(t) = K_P \, u(t - \theta_P)$$

- The important parameters that result are:
 - Steady State Process Gain, K_P
 Overall Process Time Constant, τ_P

 - Apparent Dead Time, θ_P

The FOPDT Model is All Important

- model parameters (K_P , τ_P and θ_P) are used in correlations to compute initial controller tuning
- sign of K_P indicates the action of the controller $(+K_P \rightarrow \text{reverse acting}; -K_P \rightarrow \text{direct acting})$
- size of τ_P indicates the maximum desirable loop sample time (be sure sample time T \leq 0.1 τ_P)

Step Test Data and Dynamic Process Modeling Open Loop Step Test

- · Process starts at steady state
- · Controller output signal is stepped to new value
- Measured process variable allowed to complete response

Process Gain From Step Test Data

- K_P describes how much the measured process variable, y(t), changes in response to changes in the controller output, u(t)
- A step test starts and ends at steady state, so K_p can be computed from plot axes

 $K_P = \frac{\text{Steady State Change in the Measured Process Variable, } \Delta y(t)}{\text{Steady State Change in the Controller Output, }} \Delta u(t)$

where $\varDelta \textit{u}(\textit{t})$ and $\varDelta \textit{y}(\textit{t})$ represent the total change from initial to final steady state

 A large process gain means the process will show a big response to each control action

K_P for Gravity Drained Tanks Gravity Drained Tanks - Open Loop Step Test Process Gravity Drained Tanks - Open Loop Step Test Open Loop Step Test

Steady state process gain has a: size (0.095), sign (+0.095), and units (m/%)

Overall Time Constant From Step Test Data

Time Constant τ_P describes how fast the measured process variable, y(t), responds to changes in the controller output. u(t)

 τ_P is how long it takes for the process variable to reach 63.2% of its total change, starting from when the response first begins

τ_P for Gravity Drained Tanks

1) Locate where the measured process variable first shows a clear initial response to the step change – call this time $t_{\rm Ystart}$

From plot, $t_{Ystart} = 9.6 \text{ min}$

τ_P for Gravity Drained Tanks

2) Locate where the measured process variable reaches $y_{63.2}$, or where y(t) reaches 63.2% of its total final change

Label time $t_{\rm 63.2}$ as the point in time where $y_{\rm 63.2}$ occurs

τ_P for Gravity Drained Tanks

- y(t) starts at 1.93 m and shows a total change $\Delta y = 0.95$ m
- $y_{63.2} = 1.93 \text{ m} + 0.632(\Delta y)$ = 1.93 m + 0.632(0.95 m) = 2.53 m
- y(t) passes through 2.53 m at $t_{63.2} = 11.2$ min

τ_P for Gravity Drained Tanks

- The time constant is the time difference between $t_{\rm Ystart}$ and $t_{\rm 63.2}$
- Time constant must be positive and have units of time

From the plot: $\tau_P = t_{63.2} - t_{Ystart} = 11.2 \text{ min} - 9.6 \text{ min} = 1.6 \text{ min}$

Apparent Dead Time From Step Test Data

- θ_p is the time from when the controller output step is made until when the measured process variable first responds
- Apparent dead time, θ_{P_1} is the sum of these effects:
 - transportation lag, or the time it takes for material to travel from one point to another
 - sample or instrument lag, or the time it takes to collect analyze or process a measured variable sample
 - higher order processes naturally appear slow to respond
- Notes:
 - Dead time must be positive and have units of time
 - Tight control in increasingly difficult as $\theta_P > 0.7 \tau_P$
 - For important loops, work to avoid unnecessary dead time

θ_P for Gravity Drained Tanks

$$\theta_P = t_{Ystart} - t_{Ustep}$$

= 9.6 min - 9.2 min
= 0.4 min

Processes Have Time-Varying Behaviors

- The predictions of a FOPDT model are constant over time
- But real processes change every day because
 - surfaces foul or corrode
 - mechanical elements like seals or bearings wear
 - feedstock quality varies and catalyst activity drifts
 - environmental conditions like heat and humidity change
- So the values of K_P, τ_P, θ_P that best describe the dynamic behavior of a process today may not be best tomorrow
- As a result, controller performance will degrade with time and periodic retuning may be required

Processes Have Nonlinear Behaviors

- The predictions of a FOPDT model are constant as operating level changes
- The response of a real process varies with operating level

A controller should be designed for a specific level of operation!