Chapter 6 Controller Design Using *Design Tools*

Defining Good Process Test Data

- The process should be at steady state before data collection starts
- The process model of all deally dominate the process noise
 The disturbances should be quiet during the dynamic test

Dynamic Testing

Limitations of the Step Test

- It moves the process away from the desired operating level for too long causing significant off-spec production

Limitations of All Open Loop Tests

- Open loop tests require operating personnel to put a loop in manual "just" to generate dynamic process data
- Popular open loop tests include: step, pulse, doublet, PRBS

Automated Controller Design Using Design Tools • Step 1: • Find model parameters that minimize sum of squared errors: $SE = \sum_{i=1}^{N} [Measured Data_i - Model Data_i]^2$ • The smaller the SSE, the better the model describes the data • To obtain a meaningful model: • process must be at steady state before data collection begins • the first point in the file must equal this steady state value • If these are not true, the model will be of little use • Uses the FOPDT model parameters in correlations to compute initial controller tuning values

Controller Design Using Closed Loop Data

- Operations may not open an existing loop for controller design, so closed loop dynamic testing required
- In theory, closed loop testing can produce data that reflects the character of the controller as well as that of the process
- In practice this rarely is a problem
- For closed loop studies, dynamic data is generated by stepping, pulsing or otherwise perturbing the set point
- The controller must be tuned aggressive enough so that the changing controller output forces the measured process variable to move more than ten times the noise band

Do Not Model Disturbance Driven Data! (for controller design)

- A controller uses the FOPDT model to understand how its output signal affects the measured process variable
- So test data must contain measured process variable dynamics that have been forced by the controller output
- Disturbance events that occur during data collection will degrade accuracy and hence usefulness of the FOPDT model

	← Open Loop Data →		Closed Loop Data
	Graphical Analysis Of Step Test	Design Tools Doublet Fit	Design Tools Fit of Set Point Doublet
Process Gain, Kp (°C/%)	-0.86	-0.90	-0.86
Time Constant, 7p (min)	1.0	1.1	1.2
Dead Time, θ_P (min)	0.3	0.9	1.0
Sum of Squared Errors (SSE)	44.1	3.2	5.4
ITAE Controller Gain, Kc (%)	°C) -2.1	-0.7	-0.7

FOPDT Fit of Underdamped Process

