Types of Valves
(from Fluid Mechanics, by F. White, McGraw-Hill, 1999)

- (a) Gate valve
- (b) Globe valve
- (c) Angle valve
- (d) Swing-check valve
- (e) Disk-type gate valve

Butterfly Valve

- Used mainly for on-off
- Lots of torque needed for high flow rates

(from Chemical Process Control, by J. B. Riggs, Ferret Publ., 2001)

Cutaway View of Globe Valve

(from Chemical Process Control, by J. B. Riggs, Ferret Publ., 2001)

- Typical globe valve
- Larger View of Cage

Close-up of Actuator

-from Chemical Process Control, by J. B. Riggs, Ferret Publ., 2001-

Valve Designs

- Globe Spli-Body Angle
Valve Design Logic Diagram

Goal: Control \(q \) by changing \(l \)

1. SAFETY
 - Fail-open or Fail-closed

2. Calculate \(\Delta p_{rv} \), required
 - may be a function of \(q \)

3. Specify design flow rate (\(q \))

4. Does \(\Delta p_{rv} \), change much
 - With changes in \(q \)?

 Equal percentage valve
 \(f(l) = R l^{-1} \), \(R \approx 25 \) to \(50 \)

5. Calculate \(C_v \)
 \(q = C_v f(l)/\Delta p_{rv} \), \(S.G. \times 0.5 \)
 - \(\Delta p_{rv} \) may change with \(q \)
 - Hopefully \(\Delta p_{rv}/\Delta p_{ps} \approx 1/4 \) to \(1/3 \)

6. Plot \(q \) vs. \(l \) to check linearity of combined system

C\(_v\)'s for an Equal Percentage Valve

<table>
<thead>
<tr>
<th>Body Size (in)</th>
<th>Stem Position as a Percentage of Total Travel</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.79, 1.25, 1.80, 2.53, 3.63</td>
</tr>
<tr>
<td>1.5</td>
<td>0.80, 1.23, 1.91, 2.95</td>
</tr>
<tr>
<td>2</td>
<td>1.65, 2.61, 4.30, 6.62</td>
</tr>
<tr>
<td>3</td>
<td>3.11, 5.77, 9.12, 13.7</td>
</tr>
<tr>
<td>4</td>
<td>4.90, 8.19, 13.5, 20.1</td>
</tr>
<tr>
<td>C(_v)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>12.7, 15.2, 17.0, 19.0</td>
</tr>
<tr>
<td>20</td>
<td>14.6, 17.0, 19.0, 21.7</td>
</tr>
<tr>
<td>30</td>
<td>16.4, 18.0, 20.0, 22.7</td>
</tr>
<tr>
<td>40</td>
<td>18.0, 20.0, 22.0, 24.7</td>
</tr>
</tbody>
</table>

(From Chemical Process Control, by J. B. Rigg, Ferret Publ., 2001)
Answers to Problem 9.4

b. Del_pv = 30 (Cv = 77)

c. Del_pv = 90 (Cv = 44)

a. Del_pv = 5 (Cv = 188)