Complex Factors

- Denominator may have complex roots
 - $s^2 + d_1 s + d_0$ where $d_1^2/4 < d_0$
 - Remember quadratic formula
- Example: $s^2 + 4s + 5$

Implications of Complex Factors

- Complex roots indicate oscillatory behavior
- If the sign of the real part of the complex roots is negative, convergence is expected
 - Conversely, if the real part is positive, it will diverge
- Algebra needed to invert transforms with complex roots is messy but doable
- We don’t need to invert the transform to tell whether it will converge or diverge, or whether or not it will oscillate

Practice

- Will $y(t)$ converge or diverge? Is $y(t)$ smooth or oscillatory?

\[
Y(s) = \frac{s + 2}{s(s^2 + 4s + 13)}
\]

Method 1: $s^2 + 4s + 13 = (s + _ _)^2 + _

Method 2: $-\frac{b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 13}}{2 \cdot 1}$
Inverting Transforms with Complex Roots in the Denominator

- There are at least two different ways to proceed as described in your text on pp. 48-49.
 - Use of complex numbers and Euler's identity
 \[\cos(\omega t) = \frac{e^{j\omega t} + e^{-j\omega t}}{2}; \sin(\omega t) = \frac{e^{j\omega t} - e^{-j\omega t}}{2} \]
 - Expansion without using complex numbers, followed by completing the square to invert the transform (preferred)
 - Example 3.4

Example

\[Y(s) = \frac{s + 2}{s(5s^2 + 4s + 5)} = \frac{\alpha_1}{s} + \frac{\alpha_2 s + \alpha_3}{s^2 + 4s + 5} \]

- Find \(\alpha_1 \):
 - To get \(\alpha_2 \) and \(\alpha_3 \), clear denominator and match “like” terms
 - \(s^2 \) terms → \(\alpha_1 + \alpha_2 = 0 \), so \(\alpha_2 = -2/5 \)
 - \(s \) terms → \(4 \alpha_1 + \alpha_3 = 1 \), so \(\alpha_3 = -3/5 \)

\[Y(t) = \]

Complete the square

Put into proper form for inversion

- Wanted:
 \[s^2 + 4s + 5 = (s + b)^2 + w^2 \]

- How?
 \[b = (\text{coefficient in front of } s \text{ term})/2 = 4/2 = 2 \]

- Knowing \(b \), find \(w \)
 \[b^2 + w^2 = 5 = 4 + w^2, \text{ so } w = 1 \]

Need to Get Form in Laplace Table

\[\mathcal{L}[e^{-\alpha t}\cos(\omega t)] = \frac{s + b}{(s + b)^2 + \omega^2} \]
\[\mathcal{L}[e^{-\alpha t}\sin(\omega t)] = \frac{\omega}{(s + b)^2 + \omega^2} \]

\[\frac{s + 2}{(s + 2)^2 + 1} = \frac{-2(s + 2)}{(s + 2)^2 + 1} + 2 \int \frac{(s + 2)}{(s + 2)^2 + 1} \]
\[= -2 \left[\frac{1}{2} \right] \int \frac{(s + 2)}{(s + 2)^2 + 1} + \frac{1}{s + 2} \]

Finally:
\[Y(s) = \frac{2}{5s} \left[\frac{(s + 2)}{(s + 2)^2 + 1} \right] + \frac{1}{s + 2} \]

and inverting \(y(t) = \).
Analyze the Equation

\[y(t) = \frac{2}{5} - \frac{2}{5} e^{-2t} \cos t + \frac{1}{5} e^{-2t} \sin t \]

- \(e^{-t} \) terms mean that the system will converge at long time
- \(\sin \) and \(\cos \) terms mean permanent oscillations

Whew!!

One More Practice Problem

\[Y(s) = \frac{1}{s^2 - 4s + 13} \]

What if Roots to Denominator Are:

\[
\begin{bmatrix}
2 + 6i \\
2 - 6i \\
-1 \\
-3 \\
-2
\end{bmatrix}
\]

Initial Value

\[\frac{(s + 2)}{(s + 3)(s + 4)} \]
Final Value

\[
\frac{(s + 6)}{(s + 1)(s + 2)}
\]

Time Delay

(Fortran File)

Wanted:
- Initial step to 5
- Ramp from 5 to 0 starting at \(t = 5 \) and ending at \(t = 7 \)
- Final value of 0 after \(t = 7 \)

```fortran
program ft
  fun = 0.0
  S1 = 0.
  S2 = 0.
  S3 = 0.
  do 100 t=0.,10.,0.1
    if(t.ge.0.0) S1=1.
    if(t.ge.5.) S2=1.
    if(t.ge.7.) S3=1.
    fun=S1*5+(-5/2.)*(t-5.)*S2+5/2.*(t-7.)*S3
  print*,t,fun
  100  continue
stop
end
```