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Class 22

Complicated Transfer Functions

Business
• Next HW due Monday with SP10

– Not Friday!!!
• Divide into lab groups (of 4)

– Hand it to the TAs
• Sign up for tour of BYU Heating Plant

– To see process control equipment up close
– Class is too big!
– This Friday (Oct. 22)

• 1 pm
• 2 pm
• 3 pm

Road Map for 2nd Order Equations
Standard Form

Step
Response

Sinusoidal
Response

(long-time only)
(5-63)

Other Input
Functions
-Use partial

fractions

Underdamped
0 < ζ < 1

(5-51)

Critically
damped
ζ = 1
(5-50)

Overdamped
ζ > 1

(5-48, 5-49)

Relationship between
OS, P, tr and ζ, τ

(pp. 119-120)

What About Higher Order Systems?
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Method to describe stability behavior of 
system using simple analysis of transfer 
function

A polynomial in the numerator
is called a lead element

A polynomial in the denominator
is called a lag element

Poles and Zeros

• Transfer function can usually be represented as a 
ratio of two polynomials in the Laplace variable s
along with a possible delay term:  

where

and

Roots of Z(s) = “zeros”
Roots of P(s) = “poles”
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Different Forms of G(s)

so    z1, z2, …, zn are the zeros
and  p1, p2, …, pn are the poles

Alternatively, in time constant form,
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so    -1/τl1, -1/τl2, …, -1/τln are the zeros
and -1/τ1, -1/τ2, …, -1/τn are the poles

n ≥ m to be physically 
realizable
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So Who Cares?
• Poles show the stability of the process
• Zeros show some dynamics (lead-lag)
• Plot poles on real vs imaginary axes with “×”

Imaginary axis

Real axisx

Stable pole
long time
constant

x

Stable pole
very fast

time constant

x

x

Complex conjugate pair
of poles -- stable but

oscillatory

x

Unstable pole
“ka-boom”

Unstable
region

Stable
region

oscillations

less

more

• Grey area (positive poles) 
means unstable behavior

• Distance from origin means
– More oscillations (y 

direction)
– Faster response due to 

shorter time constant 
(x direction)

• Pole on origin means 
integrating process

• Poles on y axis mean pure 
oscillatory behavior with no 
exponential damping
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• Zeros have no effect on system stability.

• Zero in right half plane: may result in an inverse response to a 
step change in the input

• Zero in left half plane: may result in “overshoot” during a step 
response (see Fig. 6.3).

o ⇒ y        0

t

Inverse response

(initially negative)

Real 
axis

Imaginary axis

What Do Zeros Tell Us?
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Example 6.2
For the case of a single zero in an overdamped second-order 
transfer function,

( ) ( )
( )( )1 2

τ 1
(6-14)

τ 1 τ 1
aK s

G s
s s

+
=

+ +

calculate the response to the step input of magnitude M and plot 
the results qualitatively.

Solution

The response of this system to a step change in input is

( ) 1 2
τ τ τ τ/ τ / τ1 21 (6-15)
τ τ τ τ1 2 2 1

t ta ay t KM e e
⎛ ⎞− −− −= + +⎜ ⎟− −⎝ ⎠
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Note that                              as expected; hence, the effect of 
including the single zero does not change the final value nor does 
it change the number or location of the response modes. But the 
zero does affect how the response modes (exponential terms) are 
weighted in the solution, Eq. 6-15.

( )y t KM→∞ =

A certain amount of mathematical analysis (see Exercises 6.4, 6.5, 
and 6.6) will show that there are three types of responses involved 
here:

Case a:

Case b:

Case c:

1τ τa >

10 τ τa< ≤

τ 0a <
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Inverse Response

See page 134 for examples of inverse response
• Increase of steam to reboiler initially causes frothing/spillage on first trays

Example Problem

Put in pole-zero format:
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Convert to sine-cosine form:

Find poles:

(-1/3,0) ⎟⎟
⎠

⎞
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4
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Now Plot

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.4 -0.3 -0.2 -0.1 0

• All left-hand half
– Exponential decay 

(good!)
• One imaginary 

conjugate pair
– Oscillatory behavior

Example: Problem 6.1
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Find zeros and poles (use Mathcad)

-1.5

-1

-0.5

0

0.5

1

1.5

-6 -4 -2 0 2

Poles
Zeros • Two poles in unstable area

(kaboom)
• Any input or disturbance 

action will cause growth 
beyond bounds

Poles
-4.345 0.000
0.756 0.583

-1.083 0.585
-1.083 -0.585
0.756 -0.583

Zeros
-1 1
-1 -1
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Wanted: polynomial approximations to 
Why: Analysis of transfer functions

θ :se−

θse−

Two widely used approximations are:

1. Taylor Series Expansion:
2 2 3 3 4 4

θ θ θ θ1 θ (6-34)
2! 3! 4!

s s s se s− = − + − + +K

The approximation is obtained by truncating after only a few 
terms.

2. Padé Approximations:
Many approximations are available. For example, the 1/1 
approximation is,

θ

θ1
2 (6-35)θ1
2

s
s

e
s

−
−

≈
+

Polynomial Approximations to
Pade Approximations

theta = 2

-5

0

5

10

15

20

-2 -1 0 1 2

s

ex
p(

-th
et

a*
s)

exp(-theta*s)
"1/1"Pade
"2/2"Pade
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Implications for Control:

• Time delays are very bad for control because they involve a 
delay of information

• Pade approximation often used when e-θs is in denominator

Taylor Approximation of Higher-Order 
Transfer Functions

0θ
01 θ (6-57)se s− ≈ −

Goal: Approximate high-order transfer function models with 
lower-order models that have similar dynamic and steady-
state characteristics.

• For small values of s,
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(use for numerator terms)

• An alternative first-order approximation consists of the transfer 
function,

0

0

θ
θ

0

1 1 (6-58)
1 θ

s
se

se
− = ≈

+

(use for denominator terms for non-dominant time constants)

Skogestad’s “half rule”

• Skogestad (2002) has proposed a related approximation method 
for higher-order models that contain multiple time constants. 

• He approximates the largest neglected time constant in the 
following manner. 

One half of its value is added to the existing time delay (if 
any) and the other half is added to the smallest retained time 
constant. 

Time constants that are smaller than the “largest neglected 
time constant” are approximated as time delays using (6-58).
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What does 
this mean?
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Skogestad Revisited
(sounds like a movie)

1. Find largest time constant (τ1)
• Keep it

2. Find 2nd largest time constant (τ2)
• Add half of τ2 to τ1

• Add the other half of τ2 to the time delay 
(in numerator)

3. All other τ’s
• Add to time delay (in numerator) Example

please!

Example 6.4

Consider a transfer function:

( ) ( )
( )( )( )

0.1 1
(6-59)

5 1 3 1 0.5 1
K s

G s
s s s

− +
=
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Derive an approximate first-order-plus-time-delay model,

( )
θ

(6-60)
τ 1

sKeG s
s

−
=

+
%

using two methods:

(a) The Taylor series expansions of Eqs. 6-57 and 6-58.

(b) Skogestad’s half rule
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Compare the normalized responses of G(s) and the approximate 
models for a unit step input.

Solution

(a) The dominant time constant (τ = 5) is retained. Applying
the approximations in (6-57) and (6-58) gives:

0.10.1 1 (6-61)ss e−− + ≈

and

3 0.51 1 (6-62)
3 1 0.5 1

s se e
s s

− −≈ ≈
+ +

Substitution into (6-59) gives the Taylor series 
approximation, ( ) :TSG s%

( )
0.1 3 0.5 3.6

(6-63)
5 1 5 1

s s s s

TS
Ke e e KeG s

s s

− − − −
= =

+ +
%
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(denominator terms)

• According to his “half rule”, half of this value is added to the 
next largest time constant to generate a new time constant

• The other half provides a new time delay of 0.5(3) = 1.5. 
• The approximation of the RHP zero in (6-61) provides an 

additional time delay of 0.1. 
• Approximating the smallest time constant of 0.5 in (6-59) by 

(6-58) produces an additional time delay of 0.5. 
• Thus the total time delay in (6-60) is, 

θ = 1.5 + 0.1 + 0.5 = 2.1

(b) To use Skogestad’s method, we note that the largest neglected 
time constant in (6-59) has a value of three.  
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5 1 3 1 0.5 1
K s

G s
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and G(s) can be approximated as:

( )
2.1

(6-64)
6.5 1

s
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and G(s) can be approximated as:

( )
2.1

(6-64)
6.5 1

s

Sk
KeG s

s

−
=

+
%

Skogestad’s method provides better agreement with the actual 
response.
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Figure 6.10 Comparison of the actual and approximate models for Example 6.4.

Awesome! 
I prefer 
FOPDT

Example:
Parallel Processes

G1(s)

G2(s)
X(s)

R(s)

Q(s)

+
+ Y(s)

G1(s) is 1st order
G2(s) is 2nd order
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Now put in standard form: Moral:
2 systems in parallel
give lead-lag and
complicated pole-zero form

Parallel Process (cont.)

Homework Hint on Prob 6.7

See online hint, because I 
changed the problem a little bit!


