Dynamic Behavior and Stability of
Closed-Loop Control Systems

* We now want to consider the dynamic behavior of
processes that are operated using feedback control.

 The combination of the process, the feedback controller,
and the instrumentation is referred to as a feedback control
loop or a closed-loop system.

Block Diagram Representation

To illustrate the development of a block diagram, we return to a
previous example, the stirred-tank blending process considered in
earlier chapters.

Composition control system for a stirred-tank blending
process (Fig. 11.1)

(V, wy, and x, assumed to be constant)

Controlled variable:  Outlet concentration (x)
Measured variable:  Outlet concentration (x)
Manipulated variable: Flow rate (w,)
Disturbance variable: Inlet concentration (x,)

Process

In section 4.3 the approximate dynamic model of a stirred-tank
blending system was developed:

o %?: W®+@<z =W, +m variables

f=wX +W,X, — (W, +W,)X

2|2
‘ Il
=

(X, =

I
—_
=

7(Wl + Wz)

1
2=
L
Il
Il
x|
&1
|
x|
Il
—_
|
x|

9E
HI—‘

Combining partial fractions and deviation variables,
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Figure 11.2 Block diagram of the process.

Wanted:

Transfer function for each piece of equipment
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Please try to label variables, then transfer functions




Standard Labels

Y = set point

Definitions
Y= controlled variable Y,=  changeinY duetoU
U= manipulated variable Yq=  changein¥duetoD
G.= controller transfer function

transfer function for final control
element (including K, if required)

D= disturbance variable (also referred g —
to as load variable) v

P =" controller output G,=  process transfer function
E= crror signal Gy=  disturbance transfer function
G, =  transfer function for measuring
Y, = measured value of Y

element and transmitter

K, = steady-state gain for G,

Y= internal sct point (used by the
controller)

Transfer Functions

Now back to our problem
(Blending Tank)

Need transfer functions for:
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Modified Block Diagram

Notes:
1. Allvariables are in deviation variables except E
2. All variables are in Laplace coordinates (i.e., Y'(s))
3. Pink boxes need transfer functions
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Composition Sensor-Transmitter (Analyzer)

We assume that the dynamic behavior of the composition sensor-
transmitter can be approximated by a first-order transfer function:

Xn(S) _ K
. X'(s)  tps+l -

Controller

Suppose that an electronic proportional plus integral controller is
used. From Chapter 8, the controller transfer function is

. E((S)) =K, [1+I:—S] (11-4)

where P'(S) and E(s) are the Laplace transforms of the controller
output p'(t) and the error signal e(t). Note that p’ and e are
electrical signals that have units of mA, while K is dimensionless.
The error signal is expressed as
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e(t)= % (1) X 1) (11-5)

or after taking Laplace transforms,
E(s)=Xsp(s)=Xn(s) (11-6)

The symbol )?;p (t) denotes the internal set-point composition
expressed as an equivalent electrical current signal. This signal
is used internally by the controller. igp (t) is related to the actual
composition set point Xg, (t) by the composition sensor-
transmitter gain K:

X;p(t)= KmnXsp (t) (11-7)
Thus

Xg(s)
o) 11-8)
(<] X4 (5) (
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Current-to-Pressure (1/P) Transducer

Because transducers are usually designed to have linear
characteristics and negligible (fast) dynamics, we assume that the
transducer transfer function merely consists of a steady-state gain

Kip:
i . R(s) =K (11-9)
P (s) P

Control Valve

As discussed in Section 9.2, control valves are usually designed so
that the flow rate through the valve is a nearly linear function of
the signal to the valve actuator. Therefore, a first-order transfer
function usually provides an adequate model for operation of an
installed valve in the vicinity of a nominal steady state. Thus, we
assume that the control valve can be modeled as

[e.] W) _ Ky (11-10)

R(s) 1,s5+1
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Block diagram for the entire blending process
composition control system (Fig 11.7)
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What about PID with derivative on

measurement?
= +L )} Kerp —™ dY
7 0
G, () E( )=YN5; _Yrr:
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PID w/Derivative on Measurement

17

Your Homework Problem

11.11
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Manipulated {ar\able

Problem 11.11

1. First identify the controlled variable,
manipulated variable, and disturbance
variable.
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Problem 11.11

Derivative on measurement

2. Draw a block diagram similar to the one we did in
class. My diagram has 9 boxes for transfer functions,
including the unit conversion on the set point (K.,).
Also, you will have a transfer function G, for the
transport delay in the transfer line. The time delay box
should be in the feedback loop, since it only represents
the delay in measurement
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