Cascade Control

What We Will Learn in This Section

The Cascade Control Architecture

[}

(]

Benefits of a Cascade Strategy

®

Design and Tuning a Cascade Controller

[ ]

Application to a Flash Drum Process

@ Application to a Jacketed Reactor
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Cascade Control

@ Architectures for’ ‘rejection
= Feed Forward
= Cascade
@ Both require’ ‘and
engineering time in return for a controller better able
to| ‘

@ Neither architecture benefits nor detracts from set
point tracking performance
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Traditional Feedback Loop is in the Dashed
Circle
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outer primary process variable, PV1 A 4

@ A cascade is comprised of two ordinary PID controllers

@ The inner secondary loop has a traditional !
and it is nested inside the outer primary loop

Copyright © 2007 Control Station, Inc. All Rights Reserved 3 control station

Nested Loops Work to Protect Outer
Primary PV1

inner

disturb, D2 inner cascade works
™ bisturbance to protect PV1
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@ Cascade architectures seek to improve the disturbance
rejection performance of PV1
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Early Warning is Basis for Cascade Success
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@ Success in a cascade design depends on the measurement
and control of an "early warning" process variable PV2
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Cascade Design

@ Characteristics for selecting early warning PV2 include:
= it must be measurabl
= the same’ ‘used to manipulate PV1
also manipulates PV2
= the same disturbances that are of concern for PV1 also
disrupt PV2

= PV2 responds I:|to disturbances of concern
and to FCE manipulations

Copyright © 2007 Control Station, Inc. All Rights Reserved 6 control station




Cascade Design

@ A cascade design requires:

= sensors
= controllers
= final control element (FCE)

@ The output of the outer primary controller, rather than going to
a valve, becomes the*—:rof the inner secondary controller

& Because of this nested architecture:

Success requires that
the of the inner secondary inner loop
is significantly faster
than that of the outer primary outer loop
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Example: Flash Drum Process

pressure set
» down stream
(a disturbance)

overhead vapor

@
vapor
hot liquid feed
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flash .
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drain
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valve position manipulated _/
to control liquid level

@ Level must never fall so low that vapor is sent down liquid
drain nor rise so high that liquid enters the vapor line
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Flash Drum — Single Loop Architecture

(]

Design Objective = control liquid level in the drum

(]

Choose valve position as manipulated variable
= |f level too high, open valve
If level too low, close valve

@ Concern is that drain flow rate changes as a function of
= valve position
= hydrostatic head (height of the liquid)
L ta disturbance)
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F I as h D rum pressure set

overhead vapor

» down stream
(a disturbance)

@
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hot liquid feed
— T _\ <_Lsetpoint
flash . T
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1
1

i , liquid

valve position manipulated /‘ dige
to control liquid level

@ If pressure of vapor phase is constant, then as drain valve
opens and closes, the liquid drain flow rate increases and
decreases in predictable fashion

@ would then be satisfactory
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Flash Drum — Single Loop Architecture

@® Suppose the vapor phase pressure starts decreasing:
= This disturbance causes pressure pushing down on the liquid
interface to decrease

= _If the valve position were to remain constant, the liquid drain
ould similarly decrease

= Consider that if a pressure decrease occurs quickly enough,

the controller can be q] the valve yet the liquid drain
flow rate can continue to decrease

= If pressure increases suddenly, the contr. be opening
the valve while the liquid drain flow rate

This contradictory outcome can confound the controller

@ Observation - It is liquid drain flow rate, not valve position, that
must be adjusted for high performance disturbance rejection

Copyright © 2007 Control Station, Inc. All Rights Reserved 11 control station

Solution: Flash Drum Cascade Architecture

pressure set
> down stream
(a disturbance)

overhead vapor

hot liquid feed
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setpoint
| & , liquid

flow rate manipulated __* drain
to control liquid level

@ Two controllers (level control; drain flow rate control)
@ Two sensors (measuring liquid level; liquid drain flow rate)
@ One final control element (valve in the liquid drain stream)
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A Cascade Control Solution

@ |iquid level is the outer primary PV1 and controlling it remains

the

main objective

@ For inner secondary PV2 choose liquid drain flow rate:

= liquid drain flow rate is’ ‘

= the same valve used to liquid level (PV1) also
manipulates the liquid drain flow rate (PV2)

= changes in vapor phase pressure that|:]PV1 also
impact Pv2

= drain flow rate is inside the liquid level in that it responds
Welll—o——]liquid level to changes in valve position and
changes in vapor phase pressure
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Flash Drum Cascade Architecture

vapor phase

primary
set point

L,

setpoint

pressure Pressure to
—1 Drain Flow —
Relationship
secondary N liquid drain liquid
i set point Second Liquid Ui i flow rate level
Primary econdary | | Drain |—] Liquid Drain| Drum Level
Controller [ F_ o Controller Valve Process Process

secondary process variable (liquid drain flow rate)

primary process variable (liquid level)

@ ‘(main objective) is outer primary loop

@ \is inner secondary loop

& ‘is set point of secondary controller
@ Flow control dynamics are much than level control

dynamics so this is consistent with design criteria
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Flash Drum Cascade Architecture

@ If liquid level is too high, the primary level controller now
calls for an increased liquid drain flow rate rather than
simply an increase in valve opening

@ The flow controller then decides whether this means
opening or closing the valve and by how much

@ Thus, a vapor phase pressure disturbance gets addressed
quickly by the secondary flow controller and this improves
‘ performance
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Tuning a Cascade Implementation

@ Cascade loop tuning uses our existing skills:
= Begin with both controllers in

" Select|:| controller for the inner secondary loop (integral
action increases settling time and offset is rarely an issue for
the secondary process variable)

= Tune the secondary P-Only controller for’
and test it to ensure satisfactory performance

= Leave secondary controlﬁL'mj.uLQuLatic; it is now part of the
primary process. Select ontroller for the primary
loop, tune it for’ \ and test it

= With both controllers in automatic, tuning is complete
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Exploring the Jacketed Reactor Process
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@ Well mixed vessel with exothermic (heat producing) reaction

@ Residence time is constant so conversion of feed to product can
be inferred from the reactor exit stream temperature

@ Objective 2 maintain constant measured reactor exit stream
in spite of jacket inlet temperature disturbances
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The Jacketed Reactor

@ To control reactor exit stream temperature, the vessel is
enclosed with a cooling jacket

@ If the exit stream temperature (and thus conversion) is high,
the controller opens a valve to increase cooling liquid flow rate

@ This cools the reactor, slowing the heat producing reaction

@ The disturbance variable of concern is| \
temperature
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Disturbances and the Jacketed Reactor

@ Consider scenario where the temperature of the cooling liquid
entering the jacket fluctuates, changing the ability of the
cooling jacket to remove heat

@ If the cooling liquid temperature becomes colder just as the
reactor temperature starts to fall, the controller can lower the
cooling liquid flow rate yet be removing more heat than before

@ Again, a contradictory result can the controller and
impact ‘performance
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Cascade Architecture for the Jacketed
Reactor
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@ Quter primary variable remains’
@ Inner secondary variable is’ ‘
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The Reactor Cascade Architecture

@ Cooling jacket outlet temp is a proper secondary variable
= jt is measurable with a sensor

= valve used to manipulate reactor exit stream temperature
(PV1) also manipulates cooling jacket outlet temp (PV2)

s changes in cooling jacket inlet temperature that disturb
reactor exit stream temp also disturb the cooling jacket
outlet temp

= the cooling jacket outlet temp is inside the reactor exit temp
in that it responds first to changes in valve position and
changes in the cooling jacket inlet temperature
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The Reactor Cascade Architecture

jacket inlet
temperature Inlet to Outlet
——— Jacket Temp —
Relationship
primary secondary jacket outlet reactor exit
set point Primary | setpoint Secondary J:rkﬂ Cooling Jacket temperature | peactor | temperature
| ow
Teetpoint Controller Tsetpoint @ Controller Valve Process Process

secondary process variable (cooling jacket outlet temperature)

primary process variable (reactor exit stream temperature)

@ Quter primary process (PV1) is reactor exit temperature
s measured variable is reactor exit stream temperature
= controller output is set point of secondary controller
@ Inner secondary process (PV2) is the cooling jacket
= measured variable is the cooling jacket outlet temperature
= manipulated variable is the cooling jacket liquid flow rate
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Disturbance Rejection Comparison

Disturbance Rejection Performance
of Single Loop PI Controller

Disturbance Rejection Performance
of Cascade Architecture
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Set Point Tracking Performance Set Point Tracking Performance Under
Under PI Control Cascade Control
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Tuning: Gain = -3.0, Reset Time = 1.71, Sample Time = 1.0

Tuning: Gain = 1.0, Reset Time = 095, Sample Time = 1.0

@ Cascade does not provide benefit in tracking set point changes
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Answer These Questions to a Friend

@ Why use cascade control?

@ \What process characteristics are advantageous for
cascade control?

& What types of controllers should be used?

@ How are cascade controllers tuned and operated?
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