Chapter 8
- PID controller transfer functions
- Ideal derivative vs. practical
- Reverse acting vs. direct acting
- Trends

Chapter 9
Valves (We covered this early in the semester)
- Equipment
 - how to linearize and get G_v
 - Air to Open vs Air to Close
- Gains from transmitters, measurement devices

Skipped Chapter 10
(Safety, Fault Tree, Risk Assessment) – covered in ChEn 311

Chapter 11
Block Diagrams
- Get block diagram from physical diagram
- Closed loop transfer functions
- Block diagram algebra
- Closed loop behavior
 - time constants
 - final values as t approaches ∞ ($Y/Y_{sp}=?$, $Y/D=?$)
 - offset (P-control only)

Stability
- Definition of stability
- Characteristic equation
- Methods
 - Roots of Polynomial (Charact. Eqn.)
 - Routh
 - Padé approximation for time delay
 $$e^{-\theta s} = \frac{1 - \frac{\theta s}{2}}{1 + \frac{\theta s}{2}}$$
 - Direct substitution
 - Euler identity for time delay ($e^{-j\omega\theta} = \cos(\omega\theta) - j\sin(\omega\theta)$)
 - Root locus

Chapter 12
Controller Design
- Direct Synthesis & IMC (add model to correct control)
- PID parameters from ITAE and IMC
- Tuning Relations (like in Control Station)

Note: Chapter 12 was not formally covered, but it has good material.