

Figures, Graphs, and Tables ChEn 475

General Tips

- Tables have HEADINGS (above Table)
- Figures have CAPTIONS!! (below Figure)
 NO title on Figure
- Footnotes under tables are okay.
- Headings and captions should be concise and precise, not long narratives.
- Don't extend beyond the boundaries of the table or figure itself.
- Make sure that units are included in columns or rows of tables and axes of figures.

• Label each axis!!

- Units in tables, figures and text should be the same.
- Describe your tables and figures in the text of the report

Apparatus Figure

- Clear and easy to read (clean it up if it is blurry)
- Include easy to read labels
- Keep all of figure and accompanying labels within the margins of the rest of the report
- Make figures attractive, visually appealing
- Use same font as in text. You can italicize or SLIGHTLY change font size if necessary.
- Describe your figure in the text of the report

Figure 1: Glass PTx Apparatus

Giles, Wilson, and Wilding, J. Chem. Eng. Data, 41:1223-1238 (1996)

Data Figures

- Use symbols for data, lines for correlations/fits
- Don't connect data points with lines (usually)
- Be sure to include a legend
- Label axes and include units
- Place tic marks on both sides to improve readability
- Use symbols and curves that are easy to distinguish for multiple data sets on one graph
- Different colors often don't show up well in B&W
- Beware of the multiple axis labels in Mathcad
 - In general, Mathcad plots are <u>not</u> acceptable
- Watch the scale of the plots.
 - Make certain than scale is mentioned in the text if it is possible that the reader can be confused or deceived.
- Limits on axes (possible to see trend that doesn't exist or vice-versa depending on scale)
- There may be good reason to present data using a particular scale
 - To compare magnitudes to other data
 - To show trends in the data, etc.

TABLES

- Use gridlines judiciously
- Heading goes above the table
- Include the units

3-Chloro-1.2-propanediol

	<i>P</i> /kPa					
t∕°C	meas	corr	% dev			
70.58 ^a	0.116	0.115	0.46			
75.70 ^a	0.161	0.163	-1.07			
79.99 ^a	0.217	0.215	0.84			
84.46 ^a	0.285	0.286	-0.28			
101.37^{b}	0.793	0.785	1.01			
112.06^{b}	1.416	1.418	-0.15			
119.97^{b}	2.098	2.150	-2.50			
127.64^{b}	3.166	3.168	-0.07			
135.67 ^b	4.764	4.678	1.81			
213.00 ^c	101.325	101.444	-0.12			

Table 10. Results of Vapor Pressure Measurements for

 $\ln(P/kPa) = 20.4077 - 7485.96/(T/K - 12.0)$

 a Data measured in this work. b Data measured by Wilding and Wilson (1994). c Normal boiling point reported by Aldrich Chemical Co.

Table 10. Results of Vapor Pressure Measurements for 3-Chloro-1,2propanediol

	P/kPa		
t/°C	meas	corr	%dev
70.58	0.116	0.115	0.46
75.70	0.161	0.163	-1.07
79.99	0.217	0.215	0.84
84.46	0.285	0.286	-0.28
101.37	0.796	0.785	1.01
112.06	1.416	1.418	-0.15
119.97	2.098	2.15	-2.5
127.64	3.166	3.168	-0.07
135.67	4.767	4.678	1.81
213.00	101.325	101.44	-0.12

Table 10. Results of Vapor Pressure Measurements for 3-Chloro-1,2propanediol

P/kPa					
t/°C	meas	corr	%dev		
70.58	0.116	0.115	0.46		
75.70	0.161	0.163	-1.07		
79.99	0.217	0.215	0.84		
84.46	0.285	0.286	-0.28		
101.37	0.796	0.785	1.01		
112.06	1.416	1.418	-0.15		
119.97	2.098	2.15	-2.5		
127.64	3.166	3.168	-0.07		
135.67	4.767	4.678	1.81		
213.00	101.325	101.44	-0.12		

FILTERING

Almost every time you present data in graphical form, you have to *filter* the data.

Integrity in graphing means the conclusions drawn from the graph are consistent with the true cause and effect relationship in the physical system.