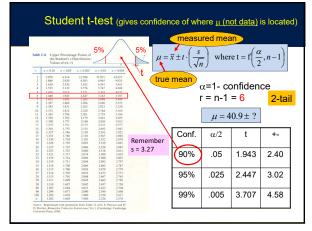

1/22/2020



Standard Deviation Summary						
(normal distribution)						
40.9 ± (3.27) 1s: 68.3% <u>of data</u> are within this range						
40.9 ± (3.27x2) 2s: 95.4% <u>of data</u> are within this range						
40.9 ± (3.27x3) 3s: 99.7% <u>of data</u> are within this range						
If normal distribution is questionable, use <u>Chebyshev's inequality</u> :						
At least 50% of the data are within 1.4 s from the mean.						
At least 75% of the data are within 2 s from the mean.						
At least 89% <u>of the data</u> are within 3 s from the mean.						
Note: The above ranges don't state how accurate the mean is - only the % of data within the given range						

7

9

T-test Summary

μ= exact mean 40.9 is sample mean

- 40.9 \pm 2.4 90% confident μ is somewhere in this range
- 40.9 \pm 3.0 95% confident μ is somewhere in this range
- 40.9 \pm 4.6 99% confident μ is somewhere in this range

Student t-test (gives confidence of where μ (not data) is located)

true mean

Conf.

90%

95%

99%

* = 0.005 63.657 9.925 5.841 4.604 4.604 4.603 3.307 3.335 3.355 3.055 3.055 3.055 3.055 3.055 3.055 3.055 3.055 3.055 3.055 2.077 2.921 2.921 2.921 2.921 2.927 2.927 2.927 2.927 2.937 2.756 2.756 2.056 2.356 2.356 2.356 2.756 2.356 2.756 2.356 2.356 2.356 2.756 2.356 2.556 2.556 2.556 2.756 2.56

x = -0.022 12.700 4.303 3.1872 2.477 2.483 2.376 2.477 2.483 2.306 2.2728 2.309 2.199 2.149 2.120 2.119 2.120 2.100 2.100 2.004 2

 1.397
 1.360

 1.381
 1.363

 1.382
 1.363

 1.385
 1.364

 1.385
 1.365

 1.386
 1.365

 1.386
 1.364

 1.386
 1.771

 1.384
 1.733

 1.335
 1.744

 1.331
 1.344

 1.332
 1.234

 1.333
 1.344

 1.333
 1.234

 1.334
 1.232

 1.335
 1.232

 1.334
 1.231

 1.334
 1.231

 1.334
 1.230

 1.334
 1.230

 1.334
 1.230

 1.334
 1.230

 1.334
 1.230

 1.334
 1.230

 1.334
 1.230

 1.335
 1.269

 1.342
 1.269

 1.343
 1.230

 1.344
 1.232

 1.359
 1.664

 1.239
 1.668

 1.232</t

8

asured me

 $\frac{s}{\sqrt{n}}$

where $t = f\left(\frac{\alpha}{2}, n-1\right)$

2-tail

+-

?

?

?

 α =1- confidence

 $\mu = 40.9 \pm ?$

t

1.943

2.447

3.707

r = n-1 = <mark>6</mark>

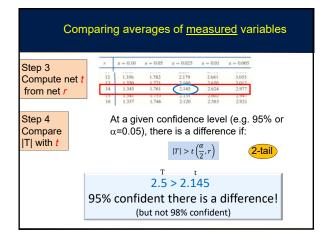
α/2

.05

.025

.005

Outline


- 1. Error of Measured Variables
- 2. Comparing Averages of Measured Variables

12

10

Comparing averages of <u>measured</u> variables								
Experiments were completed on two separate days.								
Day 1: $\overline{x}_1 = 40.9$ $s_{x1} = 3.27$ $n_{x1} = 7$ Day 2: $\overline{x}_2 = 37.2$ $s_{x2} = 2.67$ $n_{x2} = 9$								
When comparing means at a given confidence level (e.g. 95%), is there a difference between the means?								
13								

New formula:							
Step 1 (compute 7)	T :	$=\frac{1}{\sqrt{(n_{x1})}}$	$\frac{(-1)s_{x1}^2 + n_{x1}}{n_{x1} + n_{x1}}$	$\overline{x_1} - \overline{x_2}$ $\overline{(n_{x2} - 1)s}$ $\overline{(n_{x2} - 2)s}$	$\frac{s_{x2}^2}{n_{x1}} \left(\frac{1}{n_{x1}}\right)$	$+\frac{1}{n_{x2}}$	Larger 7]: More likely different
	For t	his exam	iple, T	= 2.5			
	For t	his exam	ple, T	= 2.5 x = 0.025	$\alpha = 0.01$	x = 0.005	
	7	α = 0.10	α = 0.05	α = 0.025			
Step 2	r 12	α = 0.10 1.356 1.350	a = 0.05	α = 0.025	2.681	3.055	
	r 12	α = 0.10	α = 0.05	α = 0.025	2.681	3.055	r = n _{x1} +n _{x2}

Example (Students work in Class)								
 Calculate x̄ and s for both sets of data Find <u>range</u> in which 95.4% <u>of the data</u> fall (for each set). Determine <u>range for μ</u> for each set at 95% probability At the 95% confidence level are the pressures different each day? 								
	Data	Pressure	Pressure					
	points	Day 1	Day 2					
	1	750	730					
	2	760	750					
	3	752	762					
	4	747	749					
	5	754	-					