
Defining Phases and Interfaces
Cantera 1.5

David G. Goodwin

August 14, 2003

Division of Engineering and Applied Science
California Institute of Technology

Email: dgoodwin@caltech.edu

CONTENTS

1 Introduction 1
1.1 Prerequisites. 1
1.2 A Simple Example. 2
1.3 Organization of this Document. 4

2 Working with Input Files 5
2.1 Input File Syntax. 5
2.2 Setting the Default Units . 9
2.3 Processing the Input File. .10
2.4 Error Handling. .12

3 Phases and Their Interfaces 15
3.1 Phases .15
3.2 Interfaces. .25
3.3 Thestateentry .26

4 Elements, Species, and Reactions 29
4.1 Elements. .29
4.2 Species. .29
4.3 Reactions. .34

5 Examples 47
5.1 Example 1: Hydrogen / Oxygen Combustion. 47
5.2 Example 2: Chemical Vapor Deposition. 53

A Glossary 59

B The Elements Database 61

Index 65

i

ii

CHAPTER

ONE

Introduction

Virtually every Cantera simulation involves one or more phases of matter. Depending on the calculation being per-
formed, it may be necessary to evaluate thermodynamic properties, transport properties, and/or homogeneous reaction
rates for the phase(s) present. In problems with multiple phases, the properties of the interfaces between phases, and
the heterogeneous reaction rates at these interfaces, may also be required.

Before the properties can be evaluated, each phase must bedefined, meaning that the models to use to compute its
properties and reaction rates must be specified, along with any parameters the models require. For example, a solid
phase might be defined as being incompressible, with a specified density and composition. A gaseous phase for a
combustion simulation might be defined as an ideal gas consisting of a mixture of many species that react with one
another via a specified set of reactions.

For phases containing multiple species and reactions, a large amount of data is required to define the phase, since the
contribution of each species to the thermodynamic and transport properties must be specified, and rate information
must be given for each reaction. While thiscouldbe done directly in an application program, a better approach is put
the phase and interface definitions in a text file that can be read by the application, so that a given phase model can be
re-used for other simulations.

This document describes how to write such files to define phases and interfaces for use in Cantera simulations. It also
includes several complete examples that list the input file, the application program or script that uses the input file, and
the resulting output, so that you can see exactly how the process of definining and using phase and interface models
works in practice.

1.1 Prerequisites

To work with Cantera input files, you need Cantera version 1.5 or later, and must have installed the Cantera Python
interface, since Cantera uses Python to parse the input files (even if you are using Cantera from some other language).
If you are using a PC running Windows, binary installers are available that can install Cantera 1.5 and the Python
interface in minutes. If you are using a unix, linux, or Mac OS X system, then the build process can automatically
build and install the Cantera Python interface for you. See the installation instructions for more details.

1

1.2 A Simple Example

1.2.1 Pure Argon Gas

To get started, let’s take a look at a definition for very simple phase: pure, gaseous argon:

ideal_gas(name = ’argon_gas’,
elements = ’Ar’,
species = ’argon’,
initial_state = state(

temperature = 1200.0,
pressure = OneAtm

)
)

species(name = ’argon’,
atoms = ’Ar:1’,
thermo = const_cp(t0 = 298.15,

h0 = 0.0,
cp0 = 2.5*GasConstant,
s0 = (154.723, ’J/mol/K’)

)
)

The first entry defines a model for a gas that uses the ideal gas equation of state, is composed only of elemental argon,
and contains one species namedargon . This species is defined in the second entry, which states that each “molecule”
of argon contains one atom of element Ar, and that the thermodynamic properties can be computed taking the heat
capacity to be constant at(5/2)R̂, with the specified values for̂h0 andŝ0 at 298.15 K.

To use this argon-gas model in an application, all that is required is to save the definition in a file, and then import it
from the file into the application. Of course, if you use Cantera from Python or Matlab, the “application” could be an
interactive session:

>>> from Cantera import *
>>> gas = importPhase(’argon.cti’)
>>> print gas

temperature 1200 K
pressure 101325 Pa

density 0.405714 kg/m^3
mean mol. weight 39.948 amu

1 kg 1 kmol
----------- ------------

enthalpy 469234 1.874e+07 J
internal energy 219489 8.768e+06 J

entropy 4597.62 1.837e+05 J/K
Gibbs function -5.04791e+06 -2.017e+08 J

heat capacity c_p 520.301 2.078e+04 J/K
heat capacity c_v 312.181 1.247e+04 J/K

X Y
------------- ------------

argon 1.000000e+00 1.000000e+00
>>>

2 Chapter 1. Introduction

Here the argon gas definition is contained in file ‘argon.cti’1

Thegas object returned by functionimportPhase implements the argon gas model, and can be used to compute
any other desired thermodynamic property, or to carry out operations that require knowing thermodynamic properties.
If, for example, we want to determine the temperature that results if argon is expanded adiabatically and reversibly
(i.e. isentropically) in a nozzle to half the initial pressure, all we have to do is this:

>>> gas.setState_SP(gas.entropy_mass(), 0.5*gas.pressure())
>>> print gas.temperature()
909.429939906

The definition of argon gas given above allows us to use Cantera to compute virtually any thermodynamic property of
pure argon gas. And of course we are not limited to using file ‘argon.cti’ in Cantera Python applications. We can use
it in Matlab just as easily:

>> gas = importPhase(’argon.cti’);
>> t = temperature(gas)

t =

1200

>> s = entropy_mole(gas)

s =

1.8367e+05

>>

or in compiled Cantera application programs written in C++ or Fortran.

1.2.2 Adding Transport Properties

For some simulations, only thermodynamic properties are needed, but for others transport properties like the viscosity
and thermal conductivity are also required. Since the definition of argon so far says nothing about the transport
properties, we need to extend it a bit before we can compute the viscosity and thermal conductivity:

ideal_gas(name = ’argon_gas’,
elements = ’Ar’,
species = ’argon’,
transport = ’mix’,
initial_state = state(

temperature = 1200.0,
pressure = OneAtm

)
)

species(name = ’argon’,
atoms = ’Ar:1’,

1By convention, Cantera input file names usually have the extension ‘.cti’, but in fact any extension (or none at all) is acceptable.

1.2. A Simple Example 3

thermo = const_cp(t0 = 298.15, h0 = 0.0,
cp0 = 2.5*GasConstant,
s0 = (154.723, ’J/mol/K’)),

transport = gas_transport(
geom = ’atom’,
diam = 3.33,
well_depth = 136.50)

)

We’ve added a specification of atransport modelto use to compute transport properties, and in the definition of species
argon , we’ve added some information needed by the transport model — specifically, the geometry of the species (an
atom), the Lennard-Jones collision diameter (3.33 A), and the Lennard-Jones well depthε/kB = 136.50 K. With
this extra information, Cantera can now compute the viscosity and thermal conductivity using the specified transport
model.2

>>> gas = importPhase(’argon.cti’)
>>> print gas.viscosity(), gas.thermalConductivity()
6.27948725896e-05 0.0490083894103

As always, property values computed by Cantera are in SI units, so this viscosity has units of Pa-s, and the thermal
conductivity has units of W/m2/K.

At this point, we have a definition of a model for argon gas that can be used to determine its thermodynamic and
transport properties, as long as the conditions are such that the ideal gas equation of state can be used. This model
would be useful, for example, to compute the properties needed for a multidimensional, compressible simulation of a
high-speed argon flow. Of course, argon is simply enough that such a model is hardly needed — most of the properties
are either constants or simple functions of temperature (and in some cases pressure).

But if we wanted to do the same high-speed compressible simulation for air, computing the properties would be much
less straightforward than for pure argon, and it would make sense to use Cantera for this purpose. As for argon, all that
is required is an appropriate definition in a text file, but now the definition will be substantially more complex than that
above. Air contains multiple species; at high temperature, not only N2, O2, and Ar are present, but also NO, NO2, N,
O, and possibly ionized species. The diatomic and triatomic species have temperature-dependent heat capacities, and
the we may also need to allow for the possibility of reaction among these species.

As a result, an input file containing a defintion of high-temperature air will be longer than the simple ‘argon.cti’ file.
But the basic structure of the file is the same, only with more species and with definitions of reactions.

1.3 Organization of this Document

In the following chapters, we’ll cover how to define phases and interfaces with any number of species and reactions.
We begin in Chapter 2 with a summary of some basic rules for writing input files, a discussion of how they are
processed, and of how errors are handled. In Chapter 3, we will go over how to define phases and interfaces, including
how to import species and reactions from external files. Then in Chapter 4, we’ll look in depth at how to specify the
component parts of phase and interface models — the elements, species, and reactions. Finally, in Chapter 5, we’ll put
it all together, and present some complete, realistic example problems, showing the input file containing the definitions
of all phases and interfaces, the application code to use the input file to solve a problem, and the resulting output.

2The ’mix’ keyword selects a model that computes pure species properties in terms of certain collision integrals from kinetic theory, and then
uses mixture rules to compute an appropriate weighted average of these values for ideal gas mixtures.

4 Chapter 1. Introduction

CHAPTER

TWO

Working with Input Files

Before we can describe how to define phases, interfaces, and their components (elements, species, and reactions), we
need to go over a few points about the mechanics of writing and processing input files.

2.1 Input File Syntax

An input file consists ofentriesanddirectives, both of which have a syntax much like functions. An entry defines an
object — for example, a reaction, or a species, or a phase. A directive sets options that affect how the entry parameters
are interpreted, such as the default unit system, or how certain errors should be handled.

Entries havefieldsthat can be assigned values. Aspeciesentry is shown below that has fieldsnameandatoms(plus
several others):

species(name = ’C60’, atoms = ’C:60’)

Most entries have some fields that are required; these must be assigned values, or else processing of the file will abort
and an error message will be printed. Other fields may be optional, and take default values if not assigned.

An entry may be either atop-level entryor anembedded entry. Top-level entries specify a phase, an interface, an
element, a species, or a reaction, and begin in the first (leftmost) column. Embedded entries specify a model, or a
group of parameters for a top-level entry, and are usually embedded in a field of another entry.

The fields of an entry are specified in the form<field_name> = <value>, and may be listed on one line, or extend
across several. For example, two entries for graphite are shown below. The first is compact:

stoichiometric_solid(name = ’graphite’, species = ’C(gr)’, elements = ’C’,
density = (2.2, ’g/cm3’)))

and the second is formatted to be easier to read:

stoichiometric_solid(
name = ’graphite’,
elements = ’C’,
species = ’C(gr)’,
density = (2.2, ’g/cm3’)

)

Both are completely equivalent.

5

The speciesC(gr) that appears in the definition of the graphite phase is also defined by a top-level entry. If the heat
capacity of graphite is approximated as constant, then the following definition could be used:

species(
name = ’C(gr)’,
atoms = ’C:1’,
thermo = const_cp(

t0 = 298.15,
h0 = 0.0,
s0 = (5.6, ’J/mol/K’), # NIST
cp0 = (8.43, ’J/mol/K’)) # Taylor and Groot (1980)

)

Note that thethermofield is assigned an embedded entry of typeconst_cp. Entries are stored as they are encountered
when the file is read, and only processed once the end of the file has been reached. Therefore, the order in which they
appear is unimportant.

2.1.1 Comments

The character’#’ is the comment character. Everything to the right of this character on a line is ignored.

#
set the default units
#
units(length = ’cm’, # use centimeters for length

quantity = ’mol’) # use moles for quantity

2.1.2 Strings

Strings may be enclosed in single quotes or double quotes, but they must match. To create a string containing single
quotes, enclose it in double quotes, and vice versa. If you want to create a string to extend over multiple lines, enclose
it in triple double quotes.

string1 = ’A string.’
string2 = "Also a ’string’"
string3 = """This is
a
string too."""

The multi-line form is useful when specifying a phase containing a large number of species:

species = """ H2 H O O2 OH H2O HO2 H2O2 C CH
CH2 CH2(S) CH3 CH4 CO CO2 HCO CH2O CH2OH CH3O
CH3OH C2H C2H2 C2H3 C2H4 C2H5 C2H6 HCCO CH2CO HCCOH
N NH NH2 NH3 NNH NO NO2 N2O HNO CN
HCN H2CN HCNN HCNO HOCN HNCO NCO N2 AR C3H7
C3H8 CH2CHO CH3CHO """

6 Chapter 2. Working with Input Files

2.1.3 Sequences

A sequence of multiple items is specified by separating the items by commas and enclosing them in square brackets
or parentheses. The individual items can have any type – strings, integers, floating-point numbers (or even entries or
other lists). Square brackets are often preferred, since parentheses are also used for other purposes in the input file, but
either can be used.

s0 = (3.5, ’J/mol/K’) # these are
s0 = [3.5, ’J/mol/K’] # equivalent

2.1.4 Variables

Another way to specify the speciesC(gr) is shown here:

graphite_thermo = const_cp(t0 = 298.15,
h0 = 0.0,
s0 = (5.6, ’J/mol/K’), # NIST
cp0 = (8.43, ’J/mol/K’) # Taylor and Groot (1980)

)
species(

name = ’C(gr)’,
atoms = ’C:1’,
thermo = graphite_thermo

)

In this form, theconst_cpentry is stored in a variable, instead of being directly embedded within thespeciesentry.
Thethermofield is assigned this variable.

Variables can also be used for any other parameter type. For example, if you are defining several phases in the file,
and you want to set them all to the same initial pressure, you could define a pressure variable

P_initial = (2.0, ’atm’)

and then set thepressurefield in each embeddedstateentry to this variable.

2.1.5 Omitting Field Names

Field names may be omitted if the values are entered in the order specified in the entry declaration. (Entry declarations
are the text printed on a colored background in the following chapters.) It is also possible to omit only some of the
field names, as long as these fields are listed first, in order , before any named fields.

For example, theelemententry is declared in Section 4.1 as

2.1. Input File Syntax 7

element(symbol, atomic_mass)
An atomic element or isotope.

symbol
The symbol for the element or isotope.

atomic_mass
The atomic mass in amu.

The first four entries below are equivalent, while the last two are incorrect and would generate an error when processed.

element(symbol = "Ar", atomic_mass = 39.948) # OK
element(atomic_mass = 39.948, symbol = "Ar") # OK
element("Ar", atomic_mass = 39.948) # OK
element("Ar", 39.948) # OK

element(39.948, "Ar") # error
element(symbol = "Ar", 39.948) # error

2.1.6 Dimensional Values

Many fields have numerical values that represent dimensional quantities — a pressure, or a density, for example. If
these are entered without specifying the units, the default units (set by theunits directive described in Section 2.2)
will be used. However, it is also possible to specify the units for each individual dimensional quantity (unless stated
otherwise). All that is required is to group the value in parentheses or square brackets with a string specifying the
units.

pressure = 1.0e5 # default is Pascals
pressure = (1.0, ’bar’) # this is equivalent

density = (4.0, ’g/cm3’)
density = 4000.0 # kg/m3

Compound unit strings may be used, as long as a few rules are followed:

1. Units in the denominator follow’/’ .

2. Units in the numerator follow’-’ , except for the first one.

3. Numerical exponents follow the unit string without a’^’ character, and must be in the range 2–6. Negative
values are not allowed.

A = (1.0e20, ’cm6/mol2/s’) # OK
h = (6.626e-34, ’J-s’) # OK
density = (3.0, ’g/cm3’) # OK

A = (1.0e20, ’cm^6/mol/s’) # error (^)
A = (1.0e20, ’cm6/mol2-s’) # error (’s’ should be in denominator)
density = (3.0, ’g-cm-3’) # error (negative exponent)

8 Chapter 2. Working with Input Files

Table 2.1: Allowed values for the fields of theunits directive.

field allowed values
length ’cm’,’m’, ’mm’
quantity ’mol’, ’kmol’, ’molec’
time ’s’, ’min’, ’hr’, ’ms’
energy ’J’, ’kJ’, ’cal’, ’kcal’
act_energy ’kJ/mol’, ’J/mol’, ’J/kmol’

’kcal/mol’, ’cal/mol’, ’eV’, ’K’

2.2 Setting the Default Units

The default unit system may be set with theunits directive. Note that unit conversions are not done until the entire file
has been read. Only oneunits directive should be present in a file, and the defaults it specifies apply to the entire file.
If the file does not contain aunits directive, the default units are meters, kilograms, kilomoles, and seconds.

Shown below are two equivalent ways of specifying the site density for an interface. In the first version, the site density
is specified without a units string, and so its units are constructed from the default units for quantity and length, which
are set with aunits directive.

units(length = ’cm’, quantity = ’molec’)
interface(name = ’Si-100’,

site_density = 1.0e15, # molecules/cm2 (default units)
...)

The second version uses a different default unit system, but overrides the default units by specifying an explicit units
string for the site density.

units(length = ’cm’, quantity = ’mol’)
interface(name = ’Si-100’,

site_density = (1.0e15, ’molec/cm2’) # override default units
...)

The second version is equivalent to the first, but would be very different if the units of the site density were not
specified!

Thelengthandtimeunits are used to construct the units for reaction pre-exponential factors. Theenergyunits are used
for molar thermodynamic properties, in combination with the units for quantity.

Since activation energies are often specified in units other than those used for thermodynamic properties, a separate
field is devoted to the default units for activation energies.

units(length = ’cm’, quantity = ’mol’, act_energy = ’kcal/mol’)
kf = Arrhenius(A = 1.0e14, b = 0.0, E = 54.0) # E is 54 kcal/mol

The declaration of theunits directive is shown in Fig. 2.1, and the allowed values for the fields of theunits directive
are listed In Table 2.1.

2.2. Setting the Default Units 9

units(length, mass, quantity, time, energy, act_energy)
The default units.

length
The default units for length. Default: ’m’

mass
The default units for mass. Default: ’kg’

quantity
The default units to specify number of molecules. Default: ’kmol’

time
The default units for time. Default: ’s’

energy
The default units for energies. Default: ’J’

act_energy
The default units for activation energies. Default: ’K’

Figure 2.1: Theunits directive. The allowed field values are listed in Table 2.1.

2.3 Processing the Input File

2.3.1 A Two-Step Process

From the point of view of the user, it appears that a Cantera application that imports a phase definition reads the input
file, and uses the information there to construct the object representing the phase or interface in the application. While
this is the net effect, it is actually a two-step process. When a function likeimportPhase is called to import a
phase definition from a file, apreprocessorruns automatically to read the input file and create adata filethat contains
the same information but in an XML-based format called CTML. After the preprocessor finishes, Cantera imports the
phase definition from the CTML data file.

The CTML file is saved in the same directory as the input file, and has the same name but with the extension changed
to ‘.xml’. If the input file has the name ‘propane.cti’, for example, then the CTML file will be placed in the same
directory with name ‘propane.xml’. If you like, once the CTML file has been created, you can specify it rather than
the ‘.cti’ input file in calls to importPhase (or similar functions). This is slightly faster, since the preprocessing
step can be skipped. It also allows Cantera simulations to be run on systems that do not have Python, which Cantera
uses in the preprocessing step but does not require to read CTML files.

2.3.2 Two File Formats

Why two file formats? There are several reasons. XML is a widely-used standard for data files, and it is designed
to be relatively easy to parse. This makes it possible for other applications to use Cantera CTML data files, without
requiring the substantial chemical knowledge that would be required to use .cti files. For example, “web services”
(small applications that run remotely over a network) are often designed to accept XML input data over the network,
perform a calculation, and send the output in XML back across the network. Supporting an XML-based data file
format facilitates using Cantera in web services or other network computing applications.

The difference between the high-level description in a .cti input file and the lower-level description in the CTML file
may be illustrated by how reactions are handled. In the input file, the reaction stoichiometry and its reversibility or
irreversibility are determined from the reaction equation. For example,

10 Chapter 2. Working with Input Files

O + HCCO <=> H + 2 CO

specifies a reversible reaction between an oxygen atom and the ketenyl radical HCCO to produce one hydrogen atom
and two carbon monoxide molecules. If<=> were replaced with=>, then it would specify that the reaction should be
treated as irreversible.

Of course, this convention is not spelled out in the input file — the parser simply has to know it, and has to also know
that a “reactant” appears on the left side of the equation, a “product” on the right, that the optional number in front of
a species name is its stoichiometric coefficient (but if missing the value is one), etc. The preprocessor does know all
this, but we cannot expect the same level of knowledge of chemical conventions by a generic XML parser.

Therefore, in the CTML file, reactions are explicitly specified to be reversible or irreversible, and the reactants and
products are explicitly listed with their stoichiometric coefficients. The XML file is, in a sense, a “dumbed-down”
version of the input file, spelling out explicitly things that are only implied in the input file syntax, so that “dumb”
(i.e., easy to write) parsers can be used to read the data with minimal risk of misinterpretation.

The reaction definition

reaction("O + HCCO <=> H + 2 CO", [1.00000E+14, 0, 0])

in the input file is translated by the preprocessor to the following CTML text:

<reaction id="0028" reversible="yes">
<equation>O + HCCO [=] H + 2 CO</equation>
<rateCoeff>

<Arrhenius>
 1.000000E+14
0
<E units="cal/mol">0.000000</E>

</Arrhenius>
</rateCoeff>
<reactants>HCCO:1 O:1</reactants>
<products>H:1 CO:2</products>

</reaction>

The CTML version is much more verbose, and would be much more tedious to write by hand, but is much easier to
parse, particularly since it is not necessary to write a custom parser — virtually any standard XML parser, of which
there are many, can be used to read the CTML data.1

So in general files that are easy for knowledgable users (you) towrite are more difficult for machines toparse, because
they make use of high-level application-specific knowledge and conventions to simplify the notation. Conversely, files
that are designed to be easily parsed are tedious to write because so much has to be spelled out explicitly. A natural
solution is to use two formats, one designed for writing by humans, the other for reading by machines, and provide a
preprocessor to convert the human-friendly format to the machine-friendly one.

2.3.3 Preprocessor Internals: the ctml_writer Module

If you are interested in seeing the internals of how the preprocessing works, take a look at file ‘ctml_writer.py’ in the
Cantera Python package. Or simply start Python, and type:

1The CTML reactants andproducts elements require some extra parsing that is not standard XML. This may change in a future version
of CTML.

2.3. Processing the Input File 11

from Cantera import ctml_writer
help(ctml_writer)

The ‘ctml_writer.py’ module can also be run as a script to convert input .cti files to CTML. For example, if you have
input file ‘phasedefs.cti’, then simply type at the command line

python ctml_writer.py phasedefs.cti

to create CTML file ‘phasedefs.xml’.

Of course, most of the time creation of the CTML file will happen behind the scenes, and you will not need to be
concerned with CTML files at all.

2.4 Error Handling

During processing of an input file, errors may be encountered. These could be syntax errors, or could be ones that
are flagged as errors by Cantera due to some apparent inconsistency in the data — an unphysical value, a species that
contains an undeclared element, a reaction that contains an undeclared species, missing species or element definitions,
multiple definitions of elements, species, or reactions, and so on.

2.4.1 Syntax Errors

Syntax errors are caught by the Python preprocessor, not by Cantera, and must be corrected before proceeding further.
Python prints a “traceback” that allows you to find the line that contains the error. For example, consider the following
input file, which is intended to create a gas with the species and reactions of GRI-Mech 3.0, but has a misspelled the
field name (reactions):

ideal_gas(name = ’gas’,
elements = ’H O’,
species = ’gri30: all’,
reactionss = ’gri30: all’
)

When this definition is imported into an application, an error message like the following would be printed to the screen,
and execution of the program or script would terminate.

Traceback (most recent call last):
File "/tmp/.cttmp.py", line 8, in ?

execfile(file)
File "./gas.cti", line 7, in ?

reactionss = ’gri30: all’)
TypeError: __init__() got an unexpected keyword argument ’reactionss’

Traceback (most recent call last):
File "tgas.py", line 2, in ?

g = importPhase(’gas.cti’,’gas’)
File "/sw/lib/python2.2/site-packages/Cantera/importFromFile.py", line 22, in importPhase

return importPhases(file, [name])[0]
File "/sw/lib/python2.2/site-packages/Cantera/importFromFile.py", line 30, in importPhases

root = XML.XML_Node(name = ’doc’, src = file, preprocess = 1)
File "/sw/lib/python2.2/site-packages/Cantera/XML.py", line 28, in __init__

12 Chapter 2. Working with Input Files

_cantera.xml_build(self._xml_id, src, preprocess)
cantera.error:
Procedure: cti2ctml
Error: could not convert input file to CTML

command line was: python /tmp/.cttmp.py &> cti2ctml.log
Check error messages above for syntax errors.

The error message shows the chain of functions that were called before the error was encountered. For the most part,
these are internal Cantera functions not of direct concern here. But near the top of this message is

File "./gas.cti", line 7, in ?
reactionss = ’gri30: all’)

TypeError: __init__() got an unexpected keyword argument ’reactionss’

This message says that at line 7 in file ‘gas.cti’, the keyword (i.e. field name)’reactionss’ was not recognized.
Seeing this message, it is clear that the problem is thatreactionsis misspelled.

The traceback message is also written to file ‘cti2ctml.log’ in the local directory.

2.4.2 Cantera Errors

Now let’s consider the other class of errors — ones that Cantera, not Python, detects. Continuing the example above,
suppose that the misspelling is corrected, and the input file processed again. Again an error message results, but this
time it is from Cantera.

cantera.error:
Procedure: installSpecies
Error: species C contains undeclared element C

The problem is that the phase definition specifies that all species are to be imported from datasetgri30 , but only the
elements H and O are declared. Thegri30 datset contains species composed of the elements H, O, C, N, and Ar. If
the definition is modified to declare these additional elements,

ideal_gas(name = ’gas’,
elements = ’H O C N Ar’,
species = ’gri30: all’,
reactions = ’gri30: all’
)

it may be imported successfully.

Errors of this type do not have to be fatal, as long as you tell Cantera how you want to handle them. You can, for
example, instruct Cantera to quitely skip importing any species that contain undeclared elements, instead of flagging
them as errors. You can also specify that reactions containing undeclared species (also usually an error) should be
skipped. This allows you to very easily extract a portion of a large reaction mechanism, as will be described in Section
3.1.8.

2.4. Error Handling 13

14

CHAPTER

THREE

Phases and Their Interfaces

Now that we have covered how to write syntactically-correct input files, we can turn our attention to thecontentof the
file. We’ll start by describing the entries for phases of various types, and the look at how to define interfaces between
phases.

3.1 Phases

For each phase that appears in a problem, a corresponding entry should be present in the input file(s). For example,
suppose we want to conduct a simulation with detailed chemistry of an idealized solid-oxide fuel cell shown in Fig. 3.1.
The problem involves three solid phases (A nickel anode, a platinum cathode, and an oxygen-conducting yttrium-
stabilized zirconia electrolyte), and two different gas phases (a fuel mixture on the anode side, and air on the cathode
side). The problem also involves a number of interfaces at which heterogeneous chemistry may occur – two gas-metal
interfaces, two gas-electrolyte interfaces, and two metal-electrolyte interfaces.

How to carry out this fuel cell simulation is beyond the scope of this document; we introduce it here only to give an
example of the types of phases and interfaces that might need to be defined in order to carry out a simulation. (Of
course, many simulations with Cantera only require defining a single phase.)

There are several different types of entries, corresponding to different types of phases. They share many common
features, however, and so we will begin by discussing those aspects common to all entries for phases. The general
declaration of any of the phase entries is shown in Fig. 3.2.

Here<phase_type>stands for one of the implemented phase types. Currently, these areideal_gas, stoichiomet-
ric_solid, stoichiometric_liquid, andideal_solution. Non-ideal models will be added in future releases.

3.1.1 The Phase Name

The name field is a string that identifies the phase. It must not contain any whitespace characters or reserved XML
characters, and must be unique within the file among all phase definitions of any type.

Phases are referenced by name when importing them into an application program, or when defining an interface
between phases.

3.1.2 Declaring the Elements

The elements that may be present in the phase are declared in theelementsfield. This must be a string of element sym-
bols separated by spaces and/or commas. Each symbol must either match one listed in the database file ‘elements.xml’,
or else match the symbol of anelemententry defined elsewhere in the input file (see Section 4.1).

The ‘elements.xml’ database contains most elements of the periodic table, with their natural-abundance atomic masses
(Appendix B). It also contains a few isotopes (D, Tr), and an “element” for an electron (E). This pseudo-element can

15

Anode-Side Gas Phase

YSZ Electrolyte

Ni Metal

e
-

O
2 -

H

C

OH

CO

H

2H CH 4

TPB

Cathode-Side Gas Phase

2O

O2H

+
+

-

Pt Metal

TPB

Figure 3.1: Phases entering into a hypothetical microkinetic simulation of an idealized solid-oxide fuel cell.

<phase_type>(name, elements, species, reactions, kinetics, transport, initial_state, options)

name
A string to identify the phase. Must be unique amomg the phase names within the file.

elements
The elements. A string of element symbols.

species
The species. A string or sequence of strings in the format described in Section 3.1.3.

reactions
The homogeneous reactions. If omitted, no reactions will be included. A string or sequence of strings in
the format described in Section 3.1.4. This field is not allowed forstoichiometric_solidandstoichiomet-
ric_liquid entries.

kinetics
The kinetics model. Optional; if omitted, the default model for the phase type will be used.

transport
The transport property model. Optional. If omitted, transport property calculation will be disabled.

initial_state
Initial thermodynamic state, specified with an embeddedstateentry.

special
Special processing options. Optional.

Figure 3.2: Generic declaration for entries defining phases.

16 Chapter 3. Phases and Their Interfaces

be used to specify the composition of charged species. Note that two-character symbols should have an uppercase first
letter, and a lowercase second letter (e.g. Cu, not CU).

It should be noted that the order of the element symbols in the string determines the order in which they are stored
internally by Cantera. For example, if a phase definition specifies the elements as

ideal_gas(name = "gasmix",
elements = "H C O N Ar",
...

)

then when this definition is imported by an application, element-specific properties will be ordered in the same way:

>>> gas = importPhase(’phases.in’,’gasmix’)
>>> for n in range(gas.nElements()):
... print n, gas.elementSymbol(n)
0 H
1 C
2 O
3 N
4 Ar

For some calculations, such as multi-phase chemical equilibrium, it is important to synchronize the elements among
multiple phases, so that each phase contains the same elements with the same ordering. In such cases, simply use the
same string in theelementsfield for all phases.

3.1.3 Declaring the Species

The species in the phase are declared in thespeciesfield. They are notdefinedthere, only declared. Species definitions
may be imported from other files, or species may be defined locally usingspeciesentries elsewhere in the file.

If a single string of species symbols is given, then it is assumed that these are locally defined. For each one, a
correspondingspeciesentry must be present somewhere in the file, either preceding or following thephaseentry.
Note that the string may extend over multiple lines by delimiting it with triple quotes.

commas are optional
species = ’AR SI Si2 SiH SiH2 SiH3 SiH4’

species = ’H, O, OH, H2O, HO2, H2O2, H2, O2’

include all species defined in this file
species = ’all’

a multi-line species declaration
species = """ H2 H O O2 OH H2O HO2 H2O2 C CH

CH2 CH2(S) CH3 CH4 CO CO2 HCO CH2O CH2OH CH3O
CH3OH C2H C2H2 C2H3 C2H4 C2H5 C2H6 HCCO CH2CO HCCOH
N NH NH2 NH3 NNH NO NO2 N2O HNO CN
HCN H2CN HCNN HCNO HOCN HNCO NCO N2 AR C3H7
C3H8 CH2CHO CH3CHO """

If the species are imported from another file, instead of being defined locally, then the string should begin with the file

3.1. Phases 17

name (without extension), followed by a colon:

import selected species from silicon.xml
species = "silicon: SI SI2 SIH SIH2 SIH3 SIH4 SI2H6"

import all species from silicon.xml
species = "silicon: all"

In this case, the species definitions will be taken from file ‘silicon.xml’, which must exist either in the local directory
or somewhere on the Cantera search path.

It is also possible to import species from several sources, or mix local definitions with imported ones, by specifying a
sequence of strings:

species = ["CL2 CL F F2 HF HCL", # defined in this file
"air: O2 N2 NO", # imported from ’air.xml’
"ions: CL- F-"] # imported from ’ions.xml’

Note that the strings must be separated by commas, and enclosed in square brackets or parentheses.

3.1.4 Declaring the Reactions

The reactions among the species are declared in thereactionsfield. Just as with species, reactions may be defined
locally in the file, or may be imported from one or more other files. All reactions must only involve species that have
been declared for the phase.

Unlike species, reactions do not have a name, but do have an optionalid field. If the id field is not assigned a value,
then when the reaction entry is read it will be assigned a four-digit string encoding the reaction number, beginning
with ’0001’ for the first reaction in the file, and incrementing by one for each new reaction.

If all reactions defined locally in the input file are to be included in the phase definition, then assign thereactionsfield
the string’all’ .

reactions = ’all’

If, on the other hand, only some of the reactions defined in the file are to be included, then a range can be specified
using the reactionid fields.

reactions ’nox-12 to nox-24’

In determining which reactions to include, alexical comparison ofid strings is performed. This means, for example,
that’nox-8’ is greater than’nox-24’ . (If it is rewritten ’nox-08’ , however, then it would be lexically less than
’nox-24’ .)

Just as described above for species, reactions can be imported from another file, and reactions may be imported from
several sources.

Examples:

18 Chapter 3. Phases and Their Interfaces

import all reactions defined in this file
reactions = "all"

import all reactions defined in rxns.xml
reactions = "rxns: all"

import reactions 1-14 in rxns.xml
reactions = "rxns: 0001 to 0014"

import reactions from several sources
reactions = ["all", # all local reactions

"gas: all", # all reactions in gas.xml
"nox: n005 to n008" # reactions 5 to 8 in nox.xml

]

3.1.5 The Kinetics Model

A kinetics modelis a set of equations to use to compute reaction rates. In most cases, each type of phase has an associ-
ated kinetics model that is used by default, and so thekineticsfield does not need to be assigned a value. For example,
the ideal_gasentry has an associated kinetics model calledGasKinetics that implements mass-action kinetics,
requires integer stoichiometric coefficients, computes reverse rates from thermochemistry for reversible reactions, and
provides pressure-independent, three-body, and falloff reactions. Other models could be implemented, and this field
would then be used to select the desired model. For now, thekineticsfield can be safely ignored.

3.1.6 The Transport Model

A transport modelis a set of equations used to compute transport properties. For one phase type (ideal_gas), multiple
transport models are available; the one desired can be selected by assiging a string to this field. See Section 3.1.9 for
more details.

3.1.7 The Initial State

The phase may be assigned an initial state to which it will be set when the definition is imported into an application and
an object created. This is done by assigning fieldinitial_statean embedded entry of typestate, described in Section
3.3.

Most of the attributes defined here are “immutable,” meaning that once the definition has been imported into an
application, they cannot be changed by the application. For example, it is not possible to change the elements or the
species. The temperature, pressure, and composition, however, are “mutable” – they can be changed. This is why the
field defining the state is called theinitial_state; the object in the application will be initially set to this state, but it
may be changed at any time.

3.1.8 Special Processing Options

Theoptionsfield is used to indicate how certain conditions should be handled when importing the phase definition.
Theoptionsfield may be assigned a string or a sequence of strings from the table below.

3.1. Phases 19

Option String Meaning
no_validation Turn off all validation. Use when the definition has been previously val-

idated to speed up importing the definition into an application. Use with
caution!

skip_undeclared_elements When importing species, skip any containing undeclared elements, rather
than flagging them as an error.

skip_undeclared_species When importing reactions, skip any containing undeclared species,
rather than flagging them as an error.

Using theoptionsfield, it is possible to extract a sub-mechanism from a large reaction mechanism, as follows:

ideal_gas(name = ’hydrogen_mech’,
species = ’gri30: all’,
reactions = ’gri30:all’,
options = (’skip_undeclared_elements’,

’skip_undeclared_species’)
)

If we import this into Matlab, for example, we get a gas mixture containing the 8 species (out of 53 total) that contain
only H and O:

>> gas = importPhase(’gas.in’,’hydrogen_mech’)

temperature 300 K
pressure 1237.28 Pa
density 0.001 kg/m^3
mean mol. weight 2.01588 amu

X Y
------------- ------------

H2 1.000000e+00 1.000000e+00
H 0.000000e+00 0.000000e+00
O 0.000000e+00 0.000000e+00

O2 0.000000e+00 0.000000e+00
OH 0.000000e+00 0.000000e+00

H2O 0.000000e+00 0.000000e+00
HO2 0.000000e+00 0.000000e+00

H2O2 0.000000e+00 0.000000e+00

>> eqs = reactionEqn(gas)

eqs =

’2 O + M <=> O2 + M’
’O + H + M <=> OH + M’
’O + H2 <=> H + OH’
’O + HO2 <=> OH + O2’
’O + H2O2 <=> OH + HO2’
’H + O2 + M <=> HO2 + M’
’H + 2 O2 <=> HO2 + O2’
’H + O2 + H2O <=> HO2 + H2O’
’H + O2 <=> O + OH’
’2 H + M <=> H2 + M’
’2 H + H2 <=> 2 H2’
’2 H + H2O <=> H2 + H2O’

20 Chapter 3. Phases and Their Interfaces

ideal_gas(name, elements, species, reactions, kinetics, transport, initial_state, options)
A chemically-reacting ideal gas mixture of multiple species.

name
A string to identify the phase. Must be unique amomg the phase names within the file.

elements
The elements. A string of element symbols.

species
The species. A string or sequence of strings in the format described in Section 3.1.3.

reactions
The homogeneous reactions. If omitted, no reactions will be included. A string or sequence of strings in
the format described in Section 3.1.4 below.

kinetics
The kinetics model. Usually this field is omitted, in which case kinetics modelGasKinetics , appropri-
ate for reactions in ideal gas mixtures, is used.

transport
The transport property model. One of the strings’none’ , ’multi’ , or ’mix’ . Default =’none’

initial_state
Initial thermodynamic state, specified with an embeddedstateentry.

options
Special processing options. A string or sequence of strings in the format described in Section
3.1.8.Optional.

Figure 3.3: The declaration for theideal_gasentry.

’H + OH + M <=> H2O + M’
’H + HO2 <=> O + H2O’
’H + HO2 <=> O2 + H2’
’H + HO2 <=> 2 OH’
’H + H2O2 <=> HO2 + H2’
’H + H2O2 <=> OH + H2O’
’OH + H2 <=> H + H2O’
’2 OH (+ M) <=> H2O2 (+ M)’
’2 OH <=> O + H2O’
’OH + HO2 <=> O2 + H2O’
’OH + H2O2 <=> HO2 + H2O’
’OH + H2O2 <=> HO2 + H2O’
’2 HO2 <=> O2 + H2O2’
’2 HO2 <=> O2 + H2O2’
’OH + HO2 <=> O2 + H2O’

3.1.9 Ideal Gas Mixtures

Now we turn to the specific entry types for phases, beginning withideal_gas.

Many combustion and CVD simulations make use of reacting ideal gas mixtures. These can be defined using the
ideal_gasentry. The Cantera ideal gas model allows any number of species, and any number of reactions among
them. It supports all of the options in the widely-used model described by Kee et al. [1989], plus some additional
options for species thermodynamic properties and reaction rate expressions.

3.1. Phases 21

An example of anideal_gasentry is shown below.

ideal_gas(name = ’air8’,
elements = ’N O Ar’,
species = ’gri30: N2 O2 N O NO NO2 N2O AR’,
reactions = ’all’,
transport = ’mix’,
initial_state = state(temperature = 500.0,

pressure = (1.0, ’atm’),
mole_fractions = ’N2:0.78, O2:0.21, AR:0.01’))

This entry defines an ideal gas mixture that contains 8 species, the definitions of which are imported from dataset
gri30 (file ‘gri30.xml’). All reactions defined in the file are to be included, transport properties are to be computed
using mixture rules, and the state of the gas is to be set initially to 500 K, 1 atm, and a composition that corresponds
to air.

Transport Models

Two transport models are available for use with ideal gas mixtures. The first is a multicomponent transport model that
is based on the model described by Dixon-Lewis [1968] (see also Kee et al. [2003]). The second is a model that uses
mixture rules. To select the multicomponent model, set thetransportfield to the string’multi’ , and to select the
mixture-averaged model, set it to the string’mix’ .

ideal_gas(name = gas1,
...,
transport = "multi", # use multicomponent formulation
...)

ideal_gas(name = gas2,
...,
transport = "mix", # use mixture-averaged formulation
...)

3.1.10 Stoichiometric Solid

A stoichiometric solid is one that is modeled as having a precise, fixed composition, given by the composition of the
one species present. A stoichiometric solid can be used to define a condensed phase that can participate in heteroge-
neous reactions. (Of course, there cannot be homogeneous reactions, since the composition is fixed.)

stoichiometric_solid(name = ’graphite’,
elements = ’C’,
species = ’C(gr)’,
density = (2.2, ’g/cm3’),
initial_state = state(temperature = 300.0,

pressure = (1.0, ’atm’))

22 Chapter 3. Phases and Their Interfaces

stoichiometric_solid(name, elements, species, transport, initial_state)
A solid with fixed composition.

name
A string to identify the solid. Must be unique amomg the phase names within the file.

elements
The elements. A string of element symbols.

species
The species. A string containing exactly one species name.

transport
The transport property model to use to compute the thermal conductivity. Not yet implemented.

initial_state
Initial thermodynamic state, specified with an embeddedstateentry.

Figure 3.4: Declaration for thestoichiometric_solidentry.

stoichiometric_liquid(name, elements, species, transport, initial_state)
An incompressible liquid with fixed composition.

name
A string to identify the liquid. Must be unique amomg the phase names within the file.

elements
The elements. A string of element symbols.

species
The species. A string containing exactly one species name.

transport
Transport property model to use to compute the thermal conductivity and viscosity.

initial_state
Initial thermodynamic state, specified with an embeddedstateentry.

Figure 3.5: Declaration for thestoichiometric_liquid entry.

3.1.11 Stoichiometric Liquid

A stoichiometric liquid differs from a stoichiometric solid in only one respect: the transport manager computes the
viscosity as well as the thermal conductivity.

3.1.12 Ideal Solutions

An ideal solution is one in which the activity of each species is equal to its mole fraction:

ak = Xk, (3.1)

and thus the chemical potential is given by

µk = µ0
k(T, P) + R̂T log Xi. (3.2)

It is straightforward to show that a consequence of this is that the volume of mixing and the enthalpy of mixing are
both zero.

3.1. Phases 23

ideal_solution(name, elements, species, reactions, kinetics, transport, initial_state, options)
A chemically-reacting condensed-phase ideal solution of multiple species.

name
A string to identify the phase. Must be unique amomg the phase names within the file.

elements
The elements. A string of element symbols.

species
The species. A string or sequence of strings in the format described in Section 3.1.3.

reactions
The homogeneous reactions. If omitted, no reactions will be included. A string or sequence of strings in
the format described in Section 3.1.4.

kinetics
The kinetics model. Usually this field is omitted, in which case kinetics modelSolutionKinetics ,
appropriate for reactions in ideal solutions, is used.

transport
The transport property model. (Not yet implemented.)

initial_state
Initial thermodynamic state, specified with an embeddedstateentry.

options
Special processing options. A string or sequence of strings in the format described in Section
3.1.8.Optional.

Figure 3.6: Declaration for theideal_solutionentry.

24 Chapter 3. Phases and Their Interfaces

ideal_solution(name = ’saline’,
elements = ’H O Cl Na’,
species = ’aqueous: H2O H+ OH- Na+ Cl-’,
initial_state = state(temperature = 300.0,

mole_fractions = ’H2O:0.982, Na+:0.009, Cl-:0.009’))

Here an ideal solution is defined, with species imported from an external datasetaqueous (file aqueous.xml).
Note that these species have thermodynamic properties appropriate for solutes in ionic solutions. For example, species
H+ is not to be confused with a gas-phase hydrogen ion, which would have much higher energy. By keeping aqueous
species in a dataset separate from gas-phase ones, it is possible to avoid confusion about the identity of species like
H+. (Alternatively, they could be assigned names likeH+(aq) .)

3.2 Interfaces

Now that we have seen how to define bulk, three-dimensional phases, we can describe the procedure to define an
interface between phases.

Cantera presently implements a simple model for an interface that treats is as a two-dimensional ideal solution of
interfacial species. There is a fixed site densityn0, and each site may be occupied by one of several adsorbates, or
may be empty. The chemical potential of each species is computed using the expression for an ideal solution:

µk = µ0
k + R̂T log θk, (3.3)

whereθk is the coverage of speciesk on the surface. The coverage is related to the surface concentrationCk by

θk =
Cknk

n0
, (3.4)

wherenk is the number of sites covered or blocked by speciesk.

The entry type for this interface model isideal_interface. (Additional interface models will be added in future releases,
that allow non-ideal, coverage-dependent properties.)

Defining an interface is much like defining a phase. There are two new fields:phasesandsite_density. Thephases
field specifies the bulk phases that participate in the heterogeneous reactions. Although in most cases this string will
list one or two phases, no limit is placed on the number. This is particularly useful in some electrochemical problems,
where reactions take place near the triple-phase bounday where a gas, an electrolyte, and a metal all meet.

Thesite_densityfield is the number of adsorption sites per unit area.

Another new aspect is in the embeddedstate entry in theinitial_statefield. When specifying the initial state of an
interface, thestate entry has a fieldcoverages, which can be assigned a string specifying the initial surface species
coverages.

ideal_interface(name = ’silicon_surface’,
elements = ’Si H’,
species = ’s* s-SiH3 s-H’,
reactions = ’all’,
phases = ’gas bulk-Si’,
site_density = (1.0e15, ’molec/cm2’),
innitial_state = state(temperature = 1200.0,

coverages = ’s-H:1’)

3.2. Interfaces 25

ideal_interface(name, elements, species, reactions, site_density, phases, initial_state, options)
A chemically-reacting ideal surface solution of multiple species.

name
A string to identify the phase. Must be unique amomg the phase names within the file.

elements
The elements. A string of element symbols.

species
The species. A string or sequence of strings in the format described in Section 3.1.3.

reactions
The heterogeneous reactions at this interface. If omitted, no reactions will be included. A string or se-
quence of strings in the format described in Section 3.1.4 below.

site_density
The number of adsorption sites per unit area.

phases
A string listing the bulk phases that participate in reactions at this interface.

initial_state
Initial thermodynamic state, specified with an embeddedstateentry.

options
Special processing options, as described in Section 3.1.8.

Figure 3.7: Declaration for theideal_interfaceentry.

3.3 The stateentry

The initial state of either a phase or an interface may be set using an embeddedstate entry. Note that only one of
(pressure, density)may be specified, and only one(mole_fractions, mass_fractions, coverages).

26 Chapter 3. Phases and Their Interfaces

state(temperature, pressure, mole_fractions, mass_fractions, density, coverages)
An embedded entry that specifies the thermodynamic state of a phase or interface.

temperature
The temperature.

pressure
The pressure.

density
The density. Cannot be specified if the phase is incompressible.

mole_fractions
A string specifying the species mole fractions. Unspecified species are set to zero.

mass_fractions
A string specifying the species mass fractions. Unspecified species are set to zero.

coverages
A string specifying the species coverages. Unspecified species are set to zero. Can only be specified for
interfaces.

Figure 3.8: The declaration for thestateentry.

3.3. The stateentry 27

28

CHAPTER

FOUR

Elements, Species, and Reactions

4.1 Elements

Theelemententry defines an element or an isotope of an element. Note that these entries are not often needed, since
the the database file ‘elements.xml’ is searched for element definitions when importing phase and interface definitions.
An explicit elemententry is needed only if an isotope not in ‘elements.xml’ is required.

element(symbol = ’C-13’,
atomic_mass = 13.003354826)

element("O-!8", 17.9991603)

4.2 Species

For each species, aspeciesentry is required. Species are defined at the top-level of the input file – their definitions are
not embedded in a phase or interface entry.

4.2.1 The Species Name

Thenamefield may contain embedded parentheses,’+’ or ’-’ signs to indicate the charge, or just about anything
else that is printable and not a reserved character in XML.

Some examplenamespecifications:

element(symbol, atomic_mass)
An atomic element or isotope.

symbol
The symbol for the element or isotope. A string of any length is allowed.

atomic_mass
The atomic mass in amu.

Figure 4.1: The declaration for theelemententry.

29

species(name, atoms, thermo, transport, size, charge])
A constituent of a phase or interface.

name
The species name (or formula). The name may be arbitrarily long, although usually a relatively short,
abbreviated name is most convenient. Required parameter.

atoms
The atomic composition, specified by a string containing space-delimited<element>:<atoms>pairs. The
number of atoms may be either an integer or a floating-point number.

thermo
The parameterization to use to compute the reference-state thermodynamic properties. This must be one
of the entry types described in Section 4.2.3. To specify multiple parameterizations, each for a different
temperature range, group them in parentheses.

transport
An entry specifying parameters to compute this species’ contribution to the transport properties. This must
be one of the entry types described in Section 4.2.4, and must be consistent with the transport model of the
phase into which the species is imported. To specify parameters for multiple transport models, group the
entries in parentheses.

size
The species “size.” Currently used only for surface species, where it represents the number of sites occu-
pied.

charge
The charge, in multiples of|e|. If not specified, the charge will be calculated from the number of “atoms”
of element E, which represents an electron.

Figure 4.2: Declaration of thespeciesentry.

30 Chapter 4. Elements, Species, and Reactions

name = CH4
name = methane
name = argon_2+
name = CH2(singlet)

4.2.2 The Elemental Composition

The elemental composition is specified in theatomsentry, as follows.

atoms = "C:1 O:2" # CO2
atoms = "C:1, O:2" # CO2 with optional comma
atoms = "Y:1 Ba:2 Cu:3 O:6.5" # stoichiometric YBCO
atoms = "" # a surface species representing an empty site
atoms = "Ar:1 E:-2" # Ar++

For gaseous species, the elemental composition is well-defined, since the species represent distinct molecules. For
species in solid or liquid solutions, or on surfaces, there may be several possible ways of defining the species. For
example, an aqueous species might be defined with or without including the water molecules in the solvation cage
surrounding it.

For surface species, it is possible to omit theatomsfield entirely, in which case it is composed of nothing, and
represents an empty surface site. This can also be done to represent vacancies in solids. A charged vacancy can be
defined to be composed solely of electrons:

species(name = ’ysz-oxygen-vacancy’,
atoms = ’O:0, E:2’,
...

)

Note that an atom number of zero may be given if desired, but is completely equivalent to omitting that element.

The number of atoms of an element must be non-negative, except for the special “element” E that represents an
electron.

4.2.3 Species Thermodynamic Properties

Thephaseandinterface entries discussed in the last chapter implement specific models for the thermodynamic prop-
erties appropriate for the type of phase or interface they represent. Although each one may use different expressions to
compute the properties, they all require thermodynamic property information for the individual species. For the phase
types implemented at present, the properties needed are

1. the molar heat capacity at constant pressureĉ0
p(T) for a range of temperatures and a reference pressureP0;

2. the molar enthalpŷh(T0, P0) atP0 and a reference temperatureT0;

3. the absolute molar entropŷs(T0, P0) at (T0, P0).

The entry types described in this section can be used to provide these data. Each implements a differentparameter-
ization (functional form) for the heat capacity. Note that there is no requirement that all species in a phase use the

4.2. Species 31

NASA(range, coeffs, p0)
The NASA polynomial parameterization.

coeffs
Array of seven coefficients(a0, . . . , a6)

p0
The reference-state pressure, usually 1 atm or 1 bar. If omitted, the default value is used, which is set by
thestandard_pressuredirective.

range
The temperature range over which the parameterization is valid. This must be entered as a sequence of
two temperature values. Default: none; required input.

Figure 4.3: Declaration for theNASA entry.

same parameterization; each species can use the one most appropriate to represent how the heat capacity depends on
temperature.

Currently, three entry types are implemented, all of which provide species properties appropriate for models of ideal
gas mixtures, ideal solutions, and pure compounds. Non-ideal phase models are not yet implemented, but may be
in future releases. When they are, additional entry types may also be added that provide species-specific coefficients
required by specific non-ideal equations of state.

The NASA Polynomial Parameterization

The NASA polynomial parameterization is used to compute the species reference-state thermodynamic properties
ĉ0
p(T), ĥ0(T), andŝ0(T).

The NASA parameterization representsc0
p(T) with a fourth-order polynomial.

c0
p(T)
R

= a0 + a1T + a2T
2 + a3T

3 + a4T
4, (4.1)

h0(T)
RT

= a0 +
a1

2
T +

a2

3
T 2 a3

4
T 3 +

a4

5
T 4 + a5, (4.2)

s0(T)
R

= a0 lnT + a1T +
a2

2
T 2 +

a3

3
T 3 +

a4

4
T 4 + a6. (4.3)

Note that this is the “old” NASA polynomial form, used in the original NASA equilibrium program and in
CHEMKIN TM. It is not compatible with the form used in the most recent version of the NASA equilibrium program,
which uses 9 coefficients, not 7. (For more on the new form, seehttp://cea.grc.nasa.gov .)

A NASA parameterization is defined by an embeddedNASAentry. Very often, two NASA parameterizations are used
for two contiguous temperature ranges. This can be specified by assigning thethermofield of thespeciesentry a
sequence of twoNASA entries.

use one NASA parameterization for T < 1000 K, and another for
T > 1000 K.
species(name = "O2",

atoms = " O:2 ",
thermo = (

NASA([200.00, 1000.00], [3.782456360E+00, -2.996734160E-03,
9.847302010E-06, -9.681295090E-09, 3.243728370E-12,

-1.063943560E+03, 3.657675730E+00]),
NASA([1000.00, 3500.00], [3.282537840E+00, 1.483087540E-03,

32 Chapter 4. Elements, Species, and Reactions

Shomate(range, coeffs, p0)

coeffs
Sequence of seven coefficients(A, . . . , G)

p0
The reference-state pressure, usually 1 atm or 1 bar. If omitted, the default value set by thestan-
dard_pressuredirective is used.

range
The temperature range over which the parameterization is valid. This must be entered as a sequence of
two temperature values. Default: none; required input.

Figure 4.4: The declaration for theShomateentry.

-7.579666690E-07, 2.094705550E-10, -2.167177940E-14,
-1.088457720E+03, 5.453231290E+00])

))

The Shomate Parameterization

The Shomate parameterization is

ĉ0
p(T) = A + Bt + Ct2 + Dt3 +

E

t2
, (4.4)

ĥ0(T) = At +
Bt2

2
+

Ct3

3
+

Dt4

4
− E

t
+ F, (4.5)

ŝ0(T) = A ln t + Bt +
Ct2

2
+

Dt3

3
− E

2t2
+ G, (4.6)

wheret = T/1000. It requires 7 coefficients A, B, C, D, E, F, and G. This parameterization is used to represent
reference-state properties in the NIST Chemistry WebBook (http://webbook.nist.gov/chemistry). The
values of the coefficients A through G should be entered precisely as shown there, with no units attached.Unit
conversions to SI will be handled internally.

use s single Shomate parameterization.
species(name = "O2",

atoms = " O:2 ",
thermo = Shomate([298.0, 6000.0],

[29.659, 6.137261, -1.186521, 0.09578, -0.219663,
-9.861391, 237.948]

))

Constant Heat Capacity

In some cases, species properties may only be required at a single temperature or over a narrow temperature range. In
such cases, the heat capacity can be approximated as constant, and simpler expressions used for the thermodynamic

4.2. Species 33

const_cp(t0, h0, s0, cp0)

t0
Temperature parameterT0. Default: 298.15 K.

h0
Reference-state molar enthalpy at temperatureT0. Default: 0.0.

s0
Reference-state molar entropy at temperatureT0. Default: 0.0.

cp0
Reference-state molar heat capacity (constant). Default: 0.0.

Figure 4.5: The declaration for theconst_cpentry.

properties. Theconst_cpparameterization computes the properties as follows:

ĉ0
p(T) = ĉ0

p(T0), (4.7)

ĥ0(T) = ĥ0(T0) + ĉ0
p(T − T0), (4.8)

ŝ0(T) = ŝ0(T0) + ĉ0
p ln(T/T0) (4.9)

The parameterization uses four constants:T0, (ĉ0
p(T0), ĥ0(T0), ŝ0(T0)).

thermo = const_cp(t0 = 1200.0,
h0 = (-5.0, ’kcal/mol’))

See Chapter 5.2 for more examples of use of this parameterization.

4.2.4 Species Transport Coefficients

Transport property models in general require coefficients that express the effect of each species on the transport prop-
erties of the phase. Thetransportfield may be assigned an embedded entry that provides species-specific coefficients.

The gas_transportEntry

Currently, the only entry type isgas_transport, which supplies parameters needed by the ideal-gas transport property
models. The field values and their units of thegas_transport entry are compatible with the transport database pa-
rameters described by Kee et al. [1986]. Entries in transport databases in the format described in their report can be
used directly in the fields of thegas_transportentry, without requiring any unit conversion. The numeric field values
should all be entered as pure numbers, with no attached units string.

4.3 Reactions

Cantera supports a number of different types of reactions, including several types of homogeneous reactions, surface
reactions, and electrochemical reactions. For each, there is a corresponding entry type. The simplest entry type is
reaction, which can be used for any homogeneous reaction that has a rate expression that obeys the law of mass
action, with a rate coefficient that depends only on temperature.

34 Chapter 4. Elements, Species, and Reactions

gas_transport(geom, diam, well_depth, dipole, polar, rot_relax)
Provides species-specific coefficients for ideal-gas transport property models.

geom
A string specifying the molecular geometry. One of’atom’ , ’linear’ , or ’nonlin’ . Required.

diam
The Lennard-Jones collision diameter in Angstroms. Required.

well_depth
The Lennard-Jones well depth in Kelvin. Required.

dipole
The permanent dipole moment in Debye. Default: 0.0

polar
The polarizability in A3. Default: 0.0

rot_relax
The rotational relaxation collision number at 298 K. Dimensionless. Default: 0.0

Figure 4.6: The declaration for thegas_transportentry.

All of the entry types that define reactions share some common features. These are described first, followed by
descriptions of the individual reaction types in the following sections.

4.3.1 The Reaction Equation

The reqction equation determines the reactant and product stoichiometry. A relatively simple parsing strategy is
currently used, which assumes that all coefficient and species symbols on either side of the equation are delimited by
spaces.

2 CH2 <=> CH + CH3 # OK
2 CH2<=>CH + CH3 # OK
2CH2 <=> CH + CH3 # error
CH2 + CH2 <=> CH + CH3 # OK
2 CH2 <=> CH+CH3 # error

The incorrect versions here would generate “undeclared species” errors and would halt processing of the input file. In
the first case, the error would be that the species’2CH2’ is undeclared, and in the second case it would be species
’CH+CH3’ .

Whether the reaction is reversible or not is determined by the form of the equality sign in the reaction equation. If
either<=> or = is found, then the reaction is regarded as reversible, and the reverse rate will be computed from detailed
balance. If, on the other hand,=> is found, the reaction will be treated as irreversible.

4.3.2 The Rate Coefficient

The rate coefficient is specified with an embedded entry corresponding to the rate coefficient type. At present, the only
implemented type is the modified Arrhenius function

kf (T) = ATn exp(−E/R̂T), (4.10)

which is defined with anArrhenius entry:

4.3. Reactions 35

<reaction_type>(equation, rate_coeff, id, options)

equation
A string specifying the chemical equation.

rate_coeff
The rate coefficient for the forward direction. If a sequence of three numbers is given, these will be
interpreted as[A,n,E] in the modified Arrhenius functionATn exp(−E/R̂T).

id
An optional identification string. If omitted, it defaults to a four-digit numeric string beginning with0001
for the first reaction in the file.

options
Processing options, as described in Section 4.3.4

Figure 4.7: The declaration for a generic reaction entry.

Arrhenius (A, n, E)

A
The pre-exponential coefficient. Required input. If entered without units, the units will be computed con-
sidering all factors that affect the units. The resulting units string is written to the CTML file individually
for each reaction pre-exponential coefficient.

n
The temperature exponent. Dimensionless. Default: 0.0.

E
Activation energy. Default: 0.0.

Figure 4.8: The declaration for theArrhenius entry.

rate_coeff = Arrhenius(A = 1.0e13, n = 0, E = (7.3, ’kcal/mol’))
rate_coeff = Arrhenius(1.0e13, 0, (7.3, ’kcal/mol’))

As a shorthand, if therate_coefffield is assigned a sequence of three numbers, these are assumed to be(A,n,E) in
the modified Arrhenius function.

rate_coeff = [1.0e13, 0, (7.3, ’kcal/mol’)] # equivalent to above

The units of the pre-exponential factorA can be specified explicitly if desired. If not specified, they will be con-
structed using thequantity, length, and time units specified in theunits directive. Since the units ofA depend on
the reaction order, the units of each reactant concentration (different for bulk species in solution, surface species, and
pure condensed-phase species), and the units of the rate of progress (different for homogeneous and heterogeneous
reactions), it is usually bestnot to specify units forA, in which case they will be computed taking all of these factors
into account.

Note: if n 6= 0, then the termTn should have units of Kn, which would change the units ofA. This isnot done,
however, so the units associated withA are really the units forkf . One way to formally express this is to replaceTn

36 Chapter 4. Elements, Species, and Reactions

by the non-dimensional quantity[T/(1 K)]n.

4.3.3 The ID String

An optional identifying string can be entered in theid field, which can then be used in thereactionsfield of a phase or
interface entry to identify this reaction. If omitted, the reactions are assignedid strings as they are read in, beginning
with ’0001’ , ’0002’ , ...

Note that theid string is only used when selectively importing reactions. If all reactions in the local file or in an
external one are imported into a phase or interface, then the reactionid field is not used.

4.3.4 Options

Certain conditions are normally flagged as errors by Cantera. In some cases, theey may not be errors, and theoptions
field can be used to specify how they should be handled.

skip The skip option can be used to temporarily remove this reaction from the phase or interface that imports it,
just as if thereaction entry were commented out. The advantage of usingskip instead of commenting it out
is that a warning message is printed each time a phase or interface definition tries to import it. This serves as
a reminder that this reaction is not included, which can easily be forgotten when a reaction is “temporarily”
commented out of an input file.

duplicate Normally, when a reaction is imported into a phase, it is checked to see that it is not a duplicate of another
reaction already present in the phase, and an error results if a duplicate is found. But in some cases, it may be
appropriate to include duplicate reactions, for example if a reaction can proceed through two distinctly different
pathways, each with its own rate expression.

Another case where duplicate reactions can be used is if it is desired to implement a reaction rate coefficient of
the form

kf (T) =
N∑

n=1

AnT bn exp(−En/R̂T). (4.11)

While Cantera does not provide such a form for reaction rates, it can be implemented by definingN duplicate
reactions, and assigning one rate coefficient in the sum to each reaction.

If the duplicate option is specified, then the reaction not onlymayhave a duplicate, itmust. Any reaction
that specifies that it is a duplicate, but cannot be paired with another reaction in the phase that qualifies as its
duplicate generates an error.

negative_A. If some of the terms in the above sum have negativeAn, this scheme fails, since Cantera normally does
not allow negative pre-exponential factors. But if there are duplicate reactions such that the total rate is positive,
then negativeA parameters are acceptable, as long as thenegative_A option is specified.

4.3.5 Reactions with Pressure-Independent Rate

The reaction entry is used to represent homogeneous reactions with pressure-independent rate coefficients and mass
action kinetics.

Examples ofreaction entries that implement some reactions in the GRI-Mech 3.0 natural gas combustion mechanism
[Smith et al., 1997] are shown below.

units(length = ’cm’, quantity = ’mol’, act_energy = ’cal/mol’)
...
reaction("O + H2 <=> H + OH", [3.87000E+04, 2.7, 6260])

4.3. Reactions 37

reaction(equation, rate_coeff, id, options)
A homogeneous chemical reaction with pressure-independent rate coefficient and mass-action kinetics.

equation
A string specifying the chemical equation.

rate_coeff
The rate coefficient for the forward direction. If a sequence of three numbers is given, these will be
interpreted as[A,n,E] in the modified Arrhenius functionATn exp(−E/R̂T).

id
An optional identification string. If omitted, it defaults to a four-digit numeric string beginning with0001
for the first reaction in the file.

options
Processing options, as described in Section 4.3.4

Figure 4.9: Declaration for thereaction entry.

reaction("O + HO2 <=> OH + O2", [2.00000E+13, 0.0, 0])
reaction("O + H2O2 <=> OH + HO2", [9.63000E+06, 2.0, 4000])
reaction("O + HCCO <=> H + 2 CO", [1.00000E+14, 0.0, 0])
reaction("H + O2 + AR <=> HO2 + AR", [7.00000E+17, -0.8, 0])
reaction("HO2 + C3H7 <=> O2 + C3H8", [2.55000E+10, 0.255, -943])
reaction("HO2 + C3H7 => OH + C2H5 + CH2O", [2.41000E+13, 0.0, 0])

4.3.6 Three-Body Reactions

A three-body reaction is a gas-phase reaction of the form

A + B + M ⇀↽ AB + M. (4.12)

Here M is an unspecified collision partner that carries away excess energy to stabilize the AB molecule (forward
direction) or supplies energy to break the AB bond (reverse direction).

Different species may be more or less effective in acting as the collision partner. A species that is much lighter than
A and B may not be able to transfer much of its kinetic energy, and so would be inefficient as a collision partner. On
the other hand, a species with a transition from its ground state that is nearly resonant with one in the AB‡ activated
complex may be much more effective at exchanging energy than would otherwise be expected.

These effects can be accounted for by defining a collision efficiencyε for each species, defined such that the forward
reaction rate is

kf (T)[A][B][M], (4.13)

where
[M] =

∑
k

εkCk, (4.14)

whereCk is the concentration of speciesk. Since any constant collision efficiency can be absorbed into the rate
coefficientkf (T), the default collision efficiency is 1.0.

A three-body reaction may be defined using thethree_body_reactionentry. The equation string for a three-body
reaction must contain an’M’ or ’m’ on both the reactant and product sides of the equation.

Some examples from GRI-Mech 3.0 are shown below.

38 Chapter 4. Elements, Species, and Reactions

three_body_reaction(equation, rate_coeff, efficiencies, id, options)
A three-body reaction.

equation
A string specifying the chemical equation. The reaction can be written in either the association or dissoci-
ation directions, and may be reversible or irreversible.

rate_coeff
The rate coefficient for the forward direction. If a sequence of three numbers is given, these will be
interpreted as[A,n,E] in the modified Arrhenius functionATn exp(−E/R̂T).

efficiencies
A string specifying the third-body collision efficiencies. The efficiencies for unspecified species are set to
1.0.

id
An optional identification string. If omitted, it defaults to a four-digit numeric string beginning with0001
for the first reaction in the file.

options
Processing options, as described in Section 4.3.4

Figure 4.10: The declaration for thethree_body_reactionentry.

three_body_reaction("2 O + M <=> O2 + M", [1.20000E+17, -1, 0],
" AR:0.83 C2H6:3 CH4:2 CO:1.75 CO2:3.6 H2:2.4 H2O:15.4 ")

three_body_reaction("O + H + M <=> OH + M", [5.00000E+17, -1, 0],
efficiencies = " AR:0.7 C2H6:3 CH4:2 CO:1.5 CO2:2 H2:2 H2O:6 ")

three_body_reaction(
equation = "H + OH + M <=> H2O + M",
rate_coeff = [2.20000E+22, -2, 0],
efficiencies = " AR:0.38 C2H6:3 CH4:2 H2:0.73 H2O:3.65 "

)

As always, the field names are optionalif the field values are entered in the declaration order.

4.3.7 Falloff Reactions

A falloff reactionis one that has a rate that is first-order in [M] at low pressure, like a three-body reaction, but becomes
zero-order in [M] as [M] increases. Dissociation / association reactions of polyatomic molecules often exhibit this
behavior.

The simplest expression for the rate coefficient for a falloff reaction is the Lindemann form [Lindemann, 1922]

kf (T, [M]) =
k0[M]

1 + k0[M]
k∞

(4.15)

In the low-pressure limit, this approachesk0[M], and in the high-pressure limit it approachesk∞.

Defining the non-dimensionalreduced pressure

Pr =
k0[M]
k∞

, (4.16)

4.3. Reactions 39

falloff_reaction(equation, rate_coeff_inf, rate_coeff_0, efficiencies, falloff, id, options)
A gas-phase falloff reaction.

equation
A string specifying the chemical equation.

rate_coeff_inf
The rate coefficient for the forward direction in the high-pressure limit. If a sequence of three numbers is
given, these will be interpreted as[A,n,E] in the modified Arrhenius functionATn exp(−E/R̂T).

rate_coeff_0
The rate coefficient for the forward direction in the low-pressure limit. If a sequence of three numbers is
given, these will be interpreted as[A,n,E] in the modified Arrhenius functionATn exp(−E/R̂T).

efficiencies
A string specifying the third-body collision efficiencies. The efficiency for unspecified species is set to
1.0.

falloff
An embedded entry specifying a falloff function. If omitted, a unity falloff function (Lindemann form)
will be used.

id
An optional identification string. If omitted, it defaults to a four-digit numeric string beginning with0001
for the first reaction in the file.

options
Processing options, as described in Section 4.3.4

Figure 4.11: The declaration for thefalloff_reaction entry.

40 Chapter 4. Elements, Species, and Reactions

Eq. (4.15) may be written as

kf (T, Pr) = k∞

(
Pr

1 + Pr

)
. (4.17)

More accurate models for unimolecular processes lead to other, more complex, forms for the dependence on reduced
pressure. These can be accounted for by multiplying the Lindemann expression by a functionF (T, Pr):

kf (T, Pr) = k∞

(
Pr

1 + Pr

)
F (T, Pr). (4.18)

This expression is used to compute the rate coefficient for falloff reactions. The functionF (T, Pr) is the falloff
function, and is specified by assigning an embedded entry to thefalloff field.

The Troe Falloff Function

A widely-used falloff function is the one proposed by Gilbert et al. [1983].

Troe(A, T3, T1, T2)
The Troe falloff function.

A, T3, T1, T2
Numerical parameters. These must be entered as pure numbers with no attached dimensions.

log10 F (T, Pr) =
log10 Fcent(T)

1/(1 + f2
1)

, (4.19)

where

Fcent(T) = (1−A) exp(−T/T3) + A exp(−T/T1) + exp(−T2/T) (4.20)

f1 = (log10 Pr + C)/ (N − 0.14(log10 Pr + C)) (4.21)

C = −0.4− 0.67 log10 Fcent (4.22)

N = 0.75− 1.27 log10 Fcent (4.23)

This function requires specifying the four parameters(A, T3, T1, T2).

The SRI Falloff Function

This falloff function is based on the one originally due to Stewart et al. [1989], which required three parameters
(a, b, c). Kee et al. [1989] generalized this function slightly by adding two more parameters(d, e). (The original form
corresponds tod = 1, e = 0.) Cantera supports the extended 5-parameter form, given by

F (T, Pr) = d [a exp(−b/T) + exp(−T/c)]1/(1+log2
10 Pr)

T e. (4.24)

In keeping with the nomenclature of [Kee et al., 1989], we will refer to this as the “SRI” falloff function.

SRI(a, b, c, d, e)
The SRI falloff function.

a, b, c, d, e
Numerical parameters. These must be entered as pure numbers without attached dimensions.

4.3. Reactions 41

The Wang-Frenklach Falloff Function

This falloff function is described in Wang and Frenklach [1993].

WangFrenklach(A, T3, T1, T2, a0, a1, a2, s0, s1, s2)
The Wang-Frenklach falloff function.[Wang and Frenklach, 1993]

A, T3, T1, T2
Numerical parameters with the same meaning as those for the Troe falloff function.

a0, a1, a2
The parametersα0, α1, α2.

s0, s1, s2
The parametersσ0, σ1, σ2.

log10 F (T, Pr) =
log10 Fcent

exp[(log10 Pr − α)2/σ2]
(4.25)

α = α0 + α1T + α2T
2 (4.26)

σ = σ0 + σ1T + σ2T
2 (4.27)

Fcent(T) = (1−A) exp(−T/T3) + A exp(−T/T1) + exp(−T2/T) (4.28)

(4.29)

4.3.8 Surface Reactions

The reaction types described above can only be imported into bulk phases; if one of them is imported into an in-
terface definition, an error results. Conversely, the reaction types described in this section and the next one model
heterogeneous reactions and can only be imported into interface definitions.

For the present purposes, a “surface reaction” is any reaction that takes place on a surface, including both reactions
solely among surface species and gas-surface reactions. Asurface_reactionentry specifies a surface reaction.

A surface reaction can involve any species that belong to the interface it is imported into, or one of the bulk phases
specified in thephasesfield of the interface. Species are identified by name, and so the species names in all participat-
ing phases should be unique among all the phases.

42 Chapter 4. Elements, Species, and Reactions

surface_reaction(equation, rate_coeff, id, options)
A heterogeneous chemical reaction with pressure-independent rate coefficient and mass-action kinetics.

equation
A string specifying the chemical equation.

rate_coeff
The rate coefficient for the forward direction. If a sequence of three numbers is given, these will be
interpreted as[A,n,E] in the modified Arrhenius functionATn exp(−E/R̂T).

sticking_prob
The reactive sticking probability for the forward direction. This can only be specified if there is only one
bulk-phase reactant and it belongs to an ideal gas phase. If a sequence of three numbers is given, these will
be interpreted as[A,n,E] in the modified Arrhenius functionATn exp(−E/R̂T).

id
An optional identification string. If omitted, it defaults to a four-digit numeric string beginning with0001
for the first reaction in the file.

options
Processing options, as described in Section 4.3.4

4.3.9 Charge-Transfer Reactions

A charge-transfer reaction is an electrochemical oxidation/reduction reaction that transfers charge between phases at
different electric potentials. The electrical potential energy for the charged species participating in the reaction must be
added to their internal energies; therefore the presence of the potential difference between the phases alters the reaction
thermochemistry, which must be taken into account in computing reverse reaction rates for reversible reactions.

It also affects the activation energy, as shown in Fig. 4.12. Here the simplest case is shown in which a negatively-
charged species “r−” in solution gives up an electron to an immersed electrode and becomes the neutral species “o”:

r− ⇀↽ o + e−. (4.30)

A hypothetical potential energy curve for this reaction is shown for the case of zero electrical bias between the electrode
and the electrolytic solution, and for positive and negative bias.

The shift in the product state energy is simply−F∆V , the change in electrical potential energy of the electron in the
electrode. HereF is Faraday’s constant.

The energy surface in the neighborhood of the transition state is also affected by the bias, but the magnitude of the
change with bias depends on the nature of the transition state, and is affected by the double-layer structure at the
interface. The two extremes are

1. the forward barrier is unaffected, and thus the reverse barrier shows the full dependence on the bias:

Erev(∆V) = Erev(0) + F∆V ; (4.31)

and

2. the reverse barrier is unaffected, and thus

Efwd(∆V) = Efwd(0)− F∆V ; (4.32)

For most electron-transfer reactions, the dependence of the activation energy on bias is between these two extremes:

Efwd(∆V) = Efwd(0)− βF∆V, (4.33)

Erev(∆V) = Erev(0) + (1− β)F∆V (4.34)

4.3. Reactions 43

o + e-
Reactant Products

r-

electrolyte electrode

o

r- e-

V < 0

V = 0

V > 0

V∆∆

∆

∆

Figure 4.12: Potential energy surface along the reaction coordinate for an electron-transfer reaction.

with 0 < β < 1.

charge_transfer_reaction(equation, rate_coeff, id, options)
A heterogenous chemical reaction that transfers charge between phases.

equation
A string specifying the chemical equation.

rate_coeff
The rate coefficient for the forward direction. If a sequence of three numbers is given, these will be
interpreted as[A,n,E] in the modified Arrhenius functionATn exp(−E/R̂T).

j0
The exchange current density. Instead of specifying the rate coefficient, an exchange current density
may be specified. This value is for unit activity of all reactants, and therefore may differ from tabulated
exchange current densities.

beta
Theβ parameter.

id
An optional identification string. If omitted, it defaults to a four-digit numeric string beginning with0001
for the first reaction in the file.

options
Processing options, as described in Section 4.3.4

The results for a simple electron-transfer reaction can be generalized to any charge-transfer reaction. In the general
case, the net change in electrical potential energy in the reaction is

∆Epot,i = F
∑

k

νk,izkVk (4.35)

whereF is Faraday’s constant,νk,i is the net stoichiometric coefficient for reactioni, zk is the charge of speciesk,
andVk is the electric potential of thephasein which speciesk resides.

44 Chapter 4. Elements, Species, and Reactions

Therefore,

Ef,i = E0
f,i + β∆Epot,i, (4.36)

Er,i = E0
r,i − (1− β)∆Epot,i, (4.37)

(4.38)

If β = 0.5, the potential difference acts symmetrically on the forward and reverse reactions.

Note: although this is formulated for a general charge transfer reaction, in reality charge transfers typically occur one
electron (or proton) at a time, and so∆Epot,i = ±F∆V . Care should be taken in writing an elementary electrochem-
ical reaction mechanism to avoid “elementary” reactions that transfer multiple electrons at once, or else the effect of
the bias on the reaction rate may be overstated.

The Exchange Current Density

Rate coefficients of charge transfer reactions are often expressed in terms of theexchange current densityj0, defined
for an elementary reaction as

j0 = F |n|kf

∏
C

ν
(r)
k

k,0 , (4.39)

wheren is the number of units of charge transferred (usually 1), and the concentrations are for a specified reference
state (e.g., the values in the stirred electrolytic solution far from the electrode). HereCk,0 is taken to be the reference
concentration that results in unit activity for speciesk. This may be different than the concentrations used to generate
tabulated values ofj0, and so care should be taken to insure that the proper value forj0 is entered.

4.3. Reactions 45

46

CHAPTER

FIVE

Examples

Now that we have covered how to write Cantera input files, in the next few sections we’ll look at examples where they
are used for real applications.1

5.1 Example 1: Hydrogen / Oxygen Combustion

In the first example, we’ll define a reacting ideal-gas mixture that can be used to simulate hydrogen combustion in
oxygen. We first create input file ‘h2mech.in’, containing the text shown below. This file includes species transport
data, although transport properties will not be used in this example. The species and reaction data are taken from
GRI-Mech 3.0 [Smith et al., 1997].

5.1.1 The Input File

units(length = "cm", time = "s", quantity = "mol", act_energy = "cal/mol")

ideal_gas(name = "hydrogen_oxygen",
elements = " O H Ar ",
species = " H2 H O O2 OH H2O HO2 H2O2 AR",
reactions = "all"

)

#---
Species data
#---

species(name = "H2",
atoms = " H:2 ",
thermo = (

NASA([200.00, 1000.00], [2.344331120E+00, 7.980520750E-03,
-1.947815100E-05, 2.015720940E-08, -7.376117610E-12,
-9.179351730E+02, 6.830102380E-01]),

NASA([1000.00, 3500.00], [3.337279200E+00, -4.940247310E-05,
4.994567780E-07, -1.795663940E-10, 2.002553760E-14,

-9.501589220E+02, -3.205023310E+00])
),

transport = gas_transport(

1These examples, in some cases, use parts of Cantera that have not been fully documented yet, such as heterogeneouus chemistry. For these,
documentation is in the works.

47

geom = "linear",
diam = 2.92,
well_depth = 38.00,
polar = 0.79,
rot_relax = 280.00)

)

species(name = "H",
atoms = " H:1 ",
thermo = (

NASA([200.00, 1000.00], [2.500000000E+00, 7.053328190E-13,
-1.995919640E-15, 2.300816320E-18, -9.277323320E-22,

2.547365990E+04, -4.466828530E-01]),
NASA([1000.00, 3500.00], [2.500000010E+00, -2.308429730E-11,

1.615619480E-14, -4.735152350E-18, 4.981973570E-22,
2.547365990E+04, -4.466829140E-01])

),
transport = gas_transport(

geom = "atom",
diam = 2.05,
well_depth = 145.00)

)

species(name = "O",
atoms = " O:1 ",
thermo = (

NASA([200.00, 1000.00], [3.168267100E+00, -3.279318840E-03,
6.643063960E-06, -6.128066240E-09, 2.112659710E-12,
2.912225920E+04, 2.051933460E+00]),

NASA([1000.00, 3500.00], [2.569420780E+00, -8.597411370E-05,
4.194845890E-08, -1.001777990E-11, 1.228336910E-15,
2.921757910E+04, 4.784338640E+00])

),
transport = gas_transport(

geom = "atom",
diam = 2.75,
well_depth = 80.00)

)

species(name = "O2",
atoms = " O:2 ",
thermo = (

NASA([200.00, 1000.00], [3.782456360E+00, -2.996734160E-03,
9.847302010E-06, -9.681295090E-09, 3.243728370E-12,

-1.063943560E+03, 3.657675730E+00]),
NASA([1000.00, 3500.00], [3.282537840E+00, 1.483087540E-03,

-7.579666690E-07, 2.094705550E-10, -2.167177940E-14,
-1.088457720E+03, 5.453231290E+00])

),
transport = gas_transport(

geom = "linear",
diam = 3.46,
well_depth = 107.40,
polar = 1.60,
rot_relax = 3.80)

)

species(name = "OH",
atoms = " O:1 H:1 ",

48 Chapter 5. Examples

thermo = (
NASA([200.00, 1000.00], [3.992015430E+00, -2.401317520E-03,

4.617938410E-06, -3.881133330E-09, 1.364114700E-12,
3.615080560E+03, -1.039254580E-01]),

NASA([1000.00, 3500.00], [3.092887670E+00, 5.484297160E-04,
1.265052280E-07, -8.794615560E-11, 1.174123760E-14,
3.858657000E+03, 4.476696100E+00])

),
transport = gas_transport(

geom = "linear",
diam = 2.75,
well_depth = 80.00)

)

species(name = "H2O",
atoms = " H:2 O:1 ",
thermo = (

NASA([200.00, 1000.00], [4.198640560E+00, -2.036434100E-03,
6.520402110E-06, -5.487970620E-09, 1.771978170E-12,

-3.029372670E+04, -8.490322080E-01]),
NASA([1000.00, 3500.00], [3.033992490E+00, 2.176918040E-03,

-1.640725180E-07, -9.704198700E-11, 1.682009920E-14,
-3.000429710E+04, 4.966770100E+00])

),
transport = gas_transport(

geom = "nonlinear",
diam = 2.60,
well_depth = 572.40,
dipole = 1.84,
rot_relax = 4.00)

)

species(name = "HO2",
atoms = " H:1 O:2 ",
thermo = (

NASA([200.00, 1000.00], [4.301798010E+00, -4.749120510E-03,
2.115828910E-05, -2.427638940E-08, 9.292251240E-12,
2.948080400E+02, 3.716662450E+00]),

NASA([1000.00, 3500.00], [4.017210900E+00, 2.239820130E-03,
-6.336581500E-07, 1.142463700E-10, -1.079085350E-14,

1.118567130E+02, 3.785102150E+00])
),

transport = gas_transport(
geom = "nonlinear",
diam = 3.46,
well_depth = 107.40,
rot_relax = 1.00)

)

species(name = "H2O2",
atoms = " H:2 O:2 ",
thermo = (

NASA([200.00, 1000.00], [4.276112690E+00, -5.428224170E-04,
1.673357010E-05, -2.157708130E-08, 8.624543630E-12,

-1.770258210E+04, 3.435050740E+00]),
NASA([1000.00, 3500.00], [4.165002850E+00, 4.908316940E-03,

-1.901392250E-06, 3.711859860E-10, -2.879083050E-14,
-1.786178770E+04, 2.916156620E+00])

),

5.1. Example 1: Hydrogen / Oxygen Combustion 49

transport = gas_transport(
geom = "nonlinear",
diam = 3.46,
well_depth = 107.40,
rot_relax = 3.80)

)

species(name = "AR",
atoms = " Ar:1 ",
thermo = (

NASA([300.00, 1000.00], [2.500000000E+00, 0.000000000E+00,
0.000000000E+00, 0.000000000E+00, 0.000000000E+00,

-7.453750000E+02, 4.366000000E+00]),
NASA([1000.00, 5000.00], [2.500000000E+00, 0.000000000E+00,

0.000000000E+00, 0.000000000E+00, 0.000000000E+00,
-7.453750000E+02, 4.366000000E+00])

),
transport = gas_transport(

geom = "atom",
diam = 3.33,
well_depth = 136.50)

)

#---
Reaction data
#---

Reaction 1
three_body_reaction("2 O + M <=> O2 + M", [1.20000E+17, -1, 0],

efficiencies = " AR:0.83 H2:2.4 H2O:15.4 ")

Reaction 2
three_body_reaction("O + H + M <=> OH + M", [5.00000E+17, -1, 0],

efficiencies = " AR:0.7 H2:2 H2O:6 ")

Reaction 3
reaction("O + H2 <=> H + OH", [3.87000E+04, 2.7, 6260])

Reaction 4
reaction("O + HO2 <=> OH + O2", [2.00000E+13, 0, 0])

Reaction 5
reaction("O + H2O2 <=> OH + HO2", [9.63000E+06, 2, 4000])

Reaction 6
reaction("H + 2 O2 <=> HO2 + O2", [2.08000E+19, -1.24, 0])

Reaction 7
reaction("H + O2 + H2O <=> HO2 + H2O", [1.12600E+19, -0.76, 0])

Reaction 8
reaction("H + O2 + AR <=> HO2 + AR", [7.00000E+17, -0.8, 0])

Reaction 9
reaction("H + O2 <=> O + OH", [2.65000E+16, -0.6707, 17041])

Reaction 10
three_body_reaction("2 H + M <=> H2 + M", [1.00000E+18, -1, 0],

efficiencies = " AR:0.63 H2:0 H2O:0 ")

50 Chapter 5. Examples

Reaction 11
reaction("2 H + H2 <=> 2 H2", [9.00000E+16, -0.6, 0])

Reaction 12
reaction("2 H + H2O <=> H2 + H2O", [6.00000E+19, -1.25, 0])

Reaction 13
three_body_reaction("H + OH + M <=> H2O + M", [2.20000E+22, -2, 0],

efficiencies = " AR:0.38 H2:0.73 H2O:3.65 ")

Reaction 14
reaction("H + HO2 <=> O + H2O", [3.97000E+12, 0, 671])

Reaction 15
reaction("H + HO2 <=> O2 + H2", [4.48000E+13, 0, 1068])

Reaction 16
reaction("H + HO2 <=> 2 OH", [8.40000E+13, 0, 635])

Reaction 17
reaction("H + H2O2 <=> HO2 + H2", [1.21000E+07, 2, 5200])

Reaction 18
reaction("H + H2O2 <=> OH + H2O", [1.00000E+13, 0, 3600])

Reaction 19
reaction("OH + H2 <=> H + H2O", [2.16000E+08, 1.51, 3430])

Reaction 20
falloff_reaction("2 OH (+ M) <=> H2O2 (+ M)",

rate_coeff_inf = [7.40000E+13, -0.37, 0],
rate_coeff_0 = [2.30000E+18, -0.9, -1700],
falloff = Troe(A = 0.7346, T3 = 94, T1 = 1756, T2 = 5182),
efficiencies = " AR:0.7 H2:2 H2O:6 ")

Reaction 21
reaction("2 OH <=> O + H2O", [3.57000E+04, 2.4, -2110])

Reaction 22
reaction("OH + HO2 <=> O2 + H2O", [1.45000E+13, 0, -500])

Reaction 23
reaction("OH + H2O2 <=> HO2 + H2O", [2.00000E+12, 0, 427])

Reaction 24
reaction("OH + H2O2 <=> HO2 + H2O", [1.70000E+18, 0, 29410])

Reaction 25
reaction("2 HO2 <=> O2 + H2O2", [1.30000E+11, 0, -1630])

Reaction 26
reaction("2 HO2 <=> O2 + H2O2", [4.20000E+14, 0, 12000])

Reaction 27
reaction("OH + HO2 <=> O2 + H2O", [5.00000E+15, 0, 17330])

5.1. Example 1: Hydrogen / Oxygen Combustion 51

5.1.2 The Matlab m-File

Here this input file is used in a Matlab application to compute adiabatic, constant-volume combustion of a hydro-
gen/oxygen mixture. The Matlab m-file is shown here.

gas = importPhase(’h2mech.cti’,’hydrogen_oxygen’);
nsp = nSpecies(gas);

% set the initial conditions
set (gas,’T’,1001.0,’P’,0.1*oneatm,’X’,’H2:2, O2:1, AR:4’);

% create a reactor, and insert the gas
r = Reactor(gas);

t = 0;
dt = 3.0e-4;
tnow = 0;
m = 0;
for n = 1:15

t = t + dt;
while tnow < t

tnow = step(r, t); % take one internal timestep
m = m + 1;
tim(m) = tnow;
temp(m) = temperature(r);
xm(:,m) = moleFractions(gas);

end
end

% make plots

figure (1);
plot (tim, temp);
xlabel (’time’);
ylabel (’Temperature’);

figure (2);
plot (tim, xm);
xlabel (’time’);
ylabel (’Mole Fraction’);
legend (speciesNames(gas));

5.1.3 Results

The plots produced by running the Matlab m-file are shown below.

52 Chapter 5. Examples

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−3

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

time

T
em

pe
ra

tu
re

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time

M
ol

e
F

ra
ct

io
n

H2
H
O
O2
OH
H2O
HO2
H2O2
AR

5.2 Example 2: Chemical Vapor Deposition

Here we’ll simulate a problem with heterogeneous chemistry. (The heterogeneous chemistry capabilities of Cantera
are not yet fully documented. This example shows a bit of what can be done; more complete documentation will be
forthcoming.)

This example implements a subset of the diamond chemical vapor deposition mechanism of Harris and Goodwin
[1993]. Specifically, it implements the “trough” part of the mechanism, which describes addition of a carbon that
bridges between two dimer rows on the (2x1) reconstructed diamond (100) surface. (The rest of the mechanism
describes insertion of a carbon into the dimer 5-member rings; this process is faster than bridging across the trough,
and is therefore not rate-limiting.)

The input file is shown below.

5.2. Example 2: Chemical Vapor Deposition 53

Trough mechanism from ’S. J. Harris and D. G. Goodwin, ’Growth on
the Reconstructed Diamond (100) Surface,’ J. Phys. Chem. vol. 97,
23-28 (1993). Reactions a - t are taken directly from Table II, with
thermochemistry from Table IV. Reaction u is added here.

units(length = ’cm’, quantity = ’mol’, act_energy = ’kcal/mol’)

------- the gas -------------------------

ideal_gas(name = ’gas’,
elements = ’H C’,
species = ’gri30: H H2 CH3 CH4’,
initial_state = state(temperature = 1200.0,

pressure = 20.0*OneAtm/760.0,
mole_fractions = ’H:0.002, H2:1, CH4:0.01, CH3:0.0002’))

#------- bulk diamond --------------------

stoichiometric_solid(name = ’diamond’,
elements = ’C’,
density = (3.52, ’g/cm3’),
species = ’C(d)’)

species(name = ’C(d)’, atoms = ’C:1’) # no thermo needed (rxn ’u’ is irrev.)

#------- the diamond surface -------------

ideal_interface(name = ’diamond_100’,
elements = ’H C’,
species = ’c6HH c6H* c6*H c6** c6HM c6HM* c6*M c6B’,
reactions = ’all’,
phases = ’gas diamond’,
site_density = (3.0e-9, ’mol/cm2’),
initial_state = state(temperature = 1200.0,

coverages = ’c6H*:0.1, c6HH:0.9’))

species(name = ’c6H*’,
atoms = ’H:1’,
thermo = const_cp(h0 = (51.7, ’kcal/mol’),

s0 = (19.5, ’cal/mol/K’)))

species(name = ’c6*H’,
atoms = ’H:1’,
thermo = const_cp(h0 = (46.1, ’kcal/mol’),

s0 = (19.9, ’cal/mol/K’)))

species(name = ’c6HH’,
atoms = ’H:2’,
thermo = const_cp(h0 = (11.4, ’kcal/mol’),

s0 = (21.0, ’cal/mol/K’)))

species(name = ’c6HM’,
atoms = ’C:1 H:4’,
thermo = const_cp(h0 = (26.9, ’kcal/mol’),

54 Chapter 5. Examples

s0 = (40.3, ’cal/mol/K’)))

species(name = ’c6HM*’,
atoms = ’C:1 H:3’,
thermo = const_cp(h0 = (65.8, ’kcal/mol’),

s0 = (40.1, ’cal/mol/K’)))

species(name = ’c6*M’,
atoms = ’C:1 H:3’,
thermo = const_cp(h0 = (53.3, ’kcal/mol’),

s0 = (38.9, ’cal/mol/K’)))

species(name = ’c6**’,
atoms = ’C:0’,
thermo = const_cp(h0 = (90.0, ’kcal/mol’),

s0 = (18.4, ’cal/mol/K’)))

species(name = ’c6B’,
atoms = ’H:2 C:1’,
thermo = const_cp(h0 = (40.9, ’kcal/mol’),

s0 = (26.9, ’cal/mol/K’)))

surface_reaction(’c6HH + H <=> c6H* + H2’, [1.3e14, 0.0, 7.3]) # a
surface_reaction(’c6H* + H <=> c6HH’, [1.0e13, 0.0, 0.0]) # b
surface_reaction(’c6H* + CH3 <=> c6HM’, [5.0e12, 0.0, 0.0]) # c
surface_reaction(’c6HM + H <=> c6*M + H2’, [1.3e14, 0.0, 7.3]) # d
surface_reaction(’c6*M + H <=> c6HM’, [1.0e13, 0.0, 0.0]) # e
surface_reaction(’c6HM + H <=> c6HM* + H2’, [2.8e7, 2.0, 7.7]) # f
surface_reaction(’c6HM* + H <=> c6HM’, [1.0e13, 0.0, 0.0]) # g
surface_reaction(’c6HM* <=> c6*M’, [1.0e8, 0.0, 0.0]) # h
surface_reaction(’c6HM* + H <=> c6H* + CH3’, [3.0e13, 0.0, 0.0]) # i
surface_reaction(’c6HM* + H <=> c6B + H2’, [1.3e14, 0.0, 7.3]) # k
surface_reaction(’c6*M + H <=> c6B + H2’, [2.8e7, 2.0, 7.7]) # l
surface_reaction(’c6HH + H <=> c6*H + H2’, [1.3e14, 0.0, 7.3]) # m
surface_reaction(’c6*H + H <=> c6HH’, [1.0e13, 0.0, 0.0]) # n
surface_reaction(’c6H* + H <=> c6** + H2’, [1.3e14, 0.0, 7.3]) # o
surface_reaction(’c6** + H <=> c6*H’, [1.0e13, 0.0, 0.0]) # p
surface_reaction(’c6*H + H <=> c6** + H2’, [4.5e6, 2.0, 5.0]) # q
surface_reaction(’c6** + H <=> c6*H’, [1.0e13, 0.0, 0.0]) # r
surface_reaction(’c6** + CH3 <=> c6*M’, [5.0e12, 0.0, 0.0]) # s
surface_reaction(’c6H* <=> c6*H’, [1.0e8, 0.0, 0.0]) # t

reaction added here to add new carbon atom to bulk, and regenerate
initial site
surface_reaction(’c6B => c6HH + C(d)’, [1.0e9, 0.0, 0.0]) # u

5.2.1 The Python Script

A Python script to use this mechanism to compute the growth rate and surface coverages as a function of the atomic
hydrogen mole fraction at the surface is shown below. (Of course, this problem could have been simulated just as
easily in Matlab; we show a Python script here for the sake of variety.)

from Cantera import *

import the bulk phases

5.2. Example 2: Chemical Vapor Deposition 55

g, dbulk = importPhases(’diamond.cti’,[’gas’,’diamond’])

import the interface
d = importInterface(’diamond.cti’,’diamond_100’,phases = [g, dbulk])

mw = dbulk.molarMasses()[0] # mol. wt. of carbon

t = g.temperature()
p = g.pressure()
x = g.moleFractions()
ih = g.speciesIndex(’H’)

f = open(’d.csv’,’w’)
for n in range(20):

x[ih] /= 1.4
g.setState_TPX(t, p, x)
integratae the coverage equations to steady state
d.advanceCoverages(100.0)
cdot = d.netProductionRates(phase = dbulk)[0] # net rate of C(d) production / m^2
mdot = mw*cdot
linear_rate = mdot/dbulk.density()
writeCSV(f,[x[ih],rate]+list(d.coverages()))

f.close()

FunctionimportPhases can be used to import multiple phases from one input file. The syntax is as shown here.
FunctionimportInterface imports a single interface definition. Note that a list of objects must be supplied to this
function that implement the bulk phases. These are checked to verify that there is one in the list for each phase specified
in thephasesfield of the interface definition. Therefore, when constructing an object representing an interface, it is
necessary to build the bulk-phase objects first.

Function importInterface returns an object belonging to Python classInterface . One of its methods is
advanceCoverages , which advances the surface species coverages in time by integrating the coverage rate equa-
tions, holding the bulk-phase concentrations fixed. This is used here to determine the steady-state coverages, by
integrating for 100 s.

At steady state, the net production rate for each surface species is zero, but this is not true for the bulk-phase species.
In this example, at steady state H and CH3 are being consumed, and H2 and bulk diamond are being produced.
The steady-state deposition rate can be determined from the rate at which bulk diamond is being produced. Method
netProductionRates returns an array of the net production rates (kmol/m2/s) of the species of the specified
phase. For bulk diamond, there is only one species, so the net carbon deposition rate is given by

sdot = d.netProductionRates(phase = dbulk)
cdot = sdot[0]

which may be combined into one statement, as is done in the script. This can easily be converted to a mass deposition
rate by multiplying by the molecular weight of cargon, and then the linear growth rate can be determined by dividing
this by the density of bulk diamond.

5.2.2 Results

The computed linear growth rate converted to microns per hour is shown below, as a function of the atomic hydrogen
mole fraction holding the CH3 mole fraction fixed. The strong dependence on the H mole fraction results since it is
atomic hydrogen that creates the open surface sites where CH3 may attach.

56 Chapter 5. Examples

10
−6

10
−5

10
−4

10
−3

10
−2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

G
ro

w
th

 R
at

e
(m

ic
ro

ns
 /

hr
)

H Mole Fraction

The computed steady-state surface coverages are shown below.

10
−6

10
−5

10
−4

10
−3

10
−2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H Mole Fraction

C
ov

er
ag

e

c6HH

c6*H

c6H*

c6**

5.2. Example 2: Chemical Vapor Deposition 57

58

APPENDIX

A

Glossary

bulk
Not pertaining to, or affected by, an interface. A bulk phase is a macroscopic three-dimensional phase, and may
be a solid, liquid, or gas.

extensive
A thermodynamic property that scales with system size. The volume, mass, internal energy, and entropy are all
extensive.

intensive
A thermodynamic property that is independent of the system size. Temperature, pressure, density, and chemical
potential are intensive, as is any extensive property expressed per mole or per unit mass, such as the molar
volume, the molar entropy, the specific enthalpy, and so on.

interface
The boundary between two phases. An interface is itself a type of phase, and may have its own set of species
(adsorbates) that exist only at the interface.

phase
Matter with a homogeneous chemical composition and physical structure. A phase may be crystalline, amor-
phous, liquid, or gaseous; it may be a pure element, a chemical compound, or a solution of many components.
A phase need not be thermodynamically stable — graphite, diamond, and solid C60 are all phases of carbon,
and may co-exist indefinitely.

mixture
Any material sample containing multiple consituents.

manager
A Cantera C++ class that is responsible for implementing a model. Managers are grouped by function into
families — there is a family of “kinetics managers,” a family of “transport managers,” etc. All managers of
given family share a common interface, and are interchangeable (within limits).

model
A set of equations to evaluate a property or multiple properties, complete will all boundary conditions and/or
coefficient values.

solution
A single-phase mixture of multiple species. A solution is fully mixed on all scales, from molecular to macro-
scopic.

species
A constituent of a phase or interface. A species has a fixed elemental composition, and in a gas, corresponds to
a distinct molecule. This may not be the case in a liquid or solid, or at an interface. In every case, however, the
phase composition is fixed by specifying the relative proportions of the species.

59

stoichiometric
A phase with fixed composition, or a reaction among reactants present in specified proportions.

surface
An interface between a gaseous phase and a condensed phase.

transport model
A model to compute transport properties.

60 Appendix A. Glossary

APPENDIX

B

The Elements Database

The element atomic masses contained in file ‘elements.xml’ is listed in the table below.

Element Atomic Mass (amu)
H 1.00794
D 2.0147
Tr 3.016327
He 4.002602
Li 6.941
Be 9.012182
B 10.811
C 12.011
N 14.00674
O 15.9994
F 18.9984032
Ne 20.1797
Na 22.98977
Mg 24.3050
Al 26.98154
Si 28.0855
P 30.97376
S 32.066
Cl 35.4527
Ar 39.948
K 39.0983
Ca 40.078
Sc 44.95591
Ti 47.88
V 50.9415
Cr 51.9961
Mn 54.9381
Fe 55.847
Co 58.9332
Ni 58.69
Cu 63.546
Zn 65.39
Ga 69.723
Ge 72.61

Element Atomic Mass (amu)
As 74.92159
Se 78.96
Br 79.904
Kr 83.80
Rb 85.4678
Sr 87.62
Y 88.90585
Zr 91.224
Nb 92.90638
Mo 95.94
Tc 97.9072
Ru 101.07
Rh 102.9055
Pd 106.42
Ag 107.8682
Cd 112.411
In 114.82
Sn 118.710
Sb 121.75
Te 127.6
I 126.90447
Xe 131.29
Cs 132.90543
Ba 137.327
La 138.9055
Ce 140.115
Pr 140.90765
Nd 144.24
Pm 144.9127
Sm 150.36
Eu 151.965
Gd 157.25
Tb 158.92534
Dy 162.50

Element Atomic Mass (amu)
Ho 164.93032
Er 167.26
Tm 168.93421
Yb 173.04
Lu 174.967
Hf 178.49
Ta 180.9479
W 183.85
Re 186.207
Os 190.2
Ir 192.22
Pt 195.08
Au 196.96654
Hg 200.59
Ti 204.3833
Pb 207.2
Bi 208.98037
Po 208.9824
At 209.9871
Rn 222.0176
Fr 223.0197
Ra 226.0254
Ac 227.0279
Th 232.0381
Pa 231.03588
U 238.0508
Np 237.0482
Pu 244.0482
E 0.000545

61

62

BIBLIOGRAPHY

G. Dixon-Lewis. Flame structure and flame reaction kinetics, II: Transport phenomena in multicomponent systems.
Proc. Roy. Soc. A, 307:111–135, 1968.

R. G. Gilbert, K. Luther, and J. Troe.Ber. Bunsenges. Phys. Chem., 87:169, 1983.

S. J. Harris and D. G. Goodwin. Growth on the reconstructed diamond (100) surface.J. Phys. Chem., 97:23–28, 1993.

R. J. Kee, M. E. Coltrin, and P. Glarborg.Chemically Reacting Flow: Theory and Practice. John Wiley and Sons,
2003.

R. J. Kee, G. Dixon-Lewis, J. Warnatz, , M. E. Coltrin, and J. A. Miller. A Fortran computer code package for the
evaluation of gas-phase multicomponent transport properties. Technical Report SAND86-8246, Sandia National
Laboratories, 1986.

R. J. Kee, F. M. Rupley, and J. A. Miller. Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-
phase chemical kinetics. Technical Report SAND89-8009, Sandia National Laboratories, 1989.

F. Lindemann.Trans. Faraday Soc., 17:598, 1922.

Gregory P. Smith, David M. Golden, Michael Frenklach, Nigel W. Moriarty, Boris Eiteneer, Mikhail Goldenberg,
C. Thomas Bowman, Ronald K. Hanson, Soonho Song, William C. Gardiner, Jr., Vitali V. Lissianski, , and Zhiwei
Qin. GRI-Mech version 3.0, 1997. seehttp://www.me.berkeley.edu/gri_mech.

P. H. Stewart, C. W. Larson, and D. Golden.Combustion and Flame, 75:25, 1989.

H. Wang and M. Frenklach.Chem. Phys. Lett., 205:271, 1993.

63

64

INDEX

A, 36
a, b, c, d, e, 41
A, T3, T1, T2, 41, 42
a0, a1, a2, 42
act_energy, 10
Arrhenius, 36
atomic_mass, 8, 29
atoms, 5, 30, 31

beta, 44

charge, 30
coeffs, 32, 33
const_cp, 6, 7, 34
coverages, 27
cp0, 34

data file, 10
defined, 1
density, 27

exchange current, 45
diam, 35
dipole, 35
directive

units, 10
directives, 5

E, 36
efficiencies, 39, 40
element, 7, 29
elements, 16, 21, 23, 24, 26
embedded

entry, 5
embedded entry, 5
energy, 9, 10
entries, 5
entry

embedded, 5
top-level, 5

equation, 36, 38–40, 43, 44
exchange current

density, 45

falloff, 40, 41
falloff function, 41
falloff reaction, 39
falloff_reaction, 40
foeld, 5

gas_transport, 34, 35
geom, 35

h0, 34

id, 36, 38–40, 43, 44
ideal_gas, 19, 21, 22
ideal_interface, 25, 26
ideal_solution, 24
initial_state, 16, 21, 23, 24, 26
input file

syntax, 5
interface, 31

j0, 44

kinetics, 16, 19, 21, 24
kinetics model, 19

length, 9, 10

mass, 10
mass_fractions, 27
mole_fractions, 27

n, 36
name, 5, 16, 21, 23, 24, 26, 30
NASA, 32

options, 19–21, 24, 26, 36–40, 43, 44

p0, 32, 33
parameterization, 31
phase, 31
phases, 26, 42
polar, 35
preprocessor, 10
pressure, 27

65

quantity, 10

range, 32, 33
rate_coeff, 36, 38, 39, 43, 44
rate_coeff_0, 40
rate_coeff_inf, 40
reaction, 37, 38
reactions, 16, 21, 24, 26
reduced pressure, 39
rot_relax, 35

s0, 34
s0, s1, s2, 42
Shomate, 33
site_density, 26
size, 30
special, 16
species, 7, 16, 21, 23, 24, 26, 30, 32
standard_pressure, 32, 33
state, 7, 21, 23–27
sticking_prob, 43
stoichiometric_liquid, 23
stoichiometric_solid, 23
symbol, 8, 29
syntax

input file, 5

t0, 34
temperature, 27
thermo, 7, 30, 32
three_body_reaction, 39
time, 9, 10
top-level

entry, 5
top-level entry, 5
transport, 16, 21, 23, 24, 30
transport model, 4, 19

units, 8, 9
directive, 10

well_depth, 35

66 Index

