Using Cantera to construct
Flamelet Libraries for Large-Eddy
Simulation

Carlos Pantano

Graduate Aeronautical Laboratories
CALTECH

Z A\
AsC

i Introduction

= Application of turbulent combustion physics in the
development of subgrid models for LES.

= Activities:
= Development of subgrid-scale models.
= Numerics and implementation (patch solvers).
= Validation of canonical flows.

= Current goal is to capture statistics of reacting
shear flows (shear layers, jets and bluff body
stabilized turbulent flames).

TUT,
e‘-9’(\ £ O; \
%
(@)
z -
\o 1891 g
S
9

A50C

i People (Fluids Side)

= D. Meiron (ASCI)

= D.I. Pullin (SGS-LES Model), P.D. Dimotakis.
= D. Hill (Numerics), R. Deiterding (AMR).

= D. Goodwin (Cantera)

Z \
AsC

The Virtual Test Facility (VTF

Fluid processors |

Solid processors

Task
clients I server I server I clients
l Update boundary
' |
| Receive boundary from solid server P ouama

Compute level set via CPT and
Populate ghost cells

Update boundary pressures
using interpolation

Send boundary pressures to
galid processors

Boundary
synchronization

Receive houndary pressures
from fluld server
Apply pressure boundary conditions
at solid boundaries

Compute stable time step

Stable time step
computation

Compute stable time step

Solve fluld

Time Integration

Solve solld

.

AS5C

LES Formulation

e Conservation of mass, momentum and energy are expressed in the usual in
terms of filtered density, p, velocity, #;, pressure p and the total sensible energy,
with conservation equation given by

OF
ot

s, (~6T)+ 3 (,_ _) do7,

A Thilly | — —%-
oy, ks oxy,

6 I -\ =~ —_—
+ oxy, ((E +p)uk) Oy, oz

e The total sensible energy, E is given by
— ~ 1. . L
E= ﬁ(h + Eukuk) —p+ pk,
where k = (uju; — 4i;)/2 is the subgrid kinetic energy.

e The resolved shear viscosity, ji, and thermal conductivity, A, depend on tem-
perature as T9-7.

e The filtered enthalpy is decomposed into a resolved part and a subgrid part
through,

h= Y (D)W + hs, \
=1 /‘

where N is the number of species. .
g ASC

Closures

e The system of equations is closed by the equation of state,

N ~

- Y;
ﬁ=ﬁRO<T Z _'&+ws),

=1 Wi

where R? is the gas constant and W is the molecular weight of species 1.

e The quantities that need to be modeled are

oy = pluiu; — i),
0'5 = ﬁ(Z-’EJ—ZﬂJ),)

5 = (i~ iy) + 2oty -)
N Ty, - T,
= ?Z:l Wi

N)
Y. (mYi— hi(DHY)) \
=1 /‘
AsC

=
o
|

Chemistry Model

e The governing equation of Z is

0 /_n 0 - o A oof
“ (2 + —(5Z7.) = ———|3D — "k
5t (P2) + duy, (PZi) d, (p (?:z:,;) By,

e Combustion is modeled through the conserved scalar approach with an as-
sumed Beta-pdf is used to close the problem

an—l(l _ Z)ng—l

Foga(Zi2,8) = B(n1,n2)

e Averages are obtained from

- 1 ¥ ~
Vi, t) = | Y] (2)Prgs(Z: 2, t)dz.

e This can be used to obtain hs and ws,

N
ws(z,t) =)

1=1

F(2yv (2) — T
/Olzr 2y, Vé_Z) ip (7 w004z \

el
AsC

i Flamelet Libraries with Cantera

= 1D counterflow diffusion flame problem is used to construct
a flamelet library that is then loaded in the LES solver.

= The single counterflow flame example can be found in:

Cantera/python/examples/npflamel.py

Stoichiometric Adiabatic Flame Temperature

Maximum Temperature

o
o
g
3

Damkdhler Number

ASC

i Actual Code Example

Reference Conditions

Initialization of Reference conditions

p = OneAtm # pressure

tin_f = 300.0 # fuel inlet temperature

tin_.o = 300.0 # oxidizer inlet temperature

mdot o = 0.5 # kg/m~2/s

mdot_ f = 0.25 # kg/m~2/s

L = 0.02 #m

comp_o = '02:0.21, N2:0.78, AR:0.01"; # air composition
comp_f = 'CH4:1% # fuel composition

distance between inlets is 2 cm; start with an evenly-spaced 11-point grid
initial_grid = L*array([0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],'d")
Nfl=80 # number of flamalets to compute

TUTES
\es"\] O;

4

£
T
Z
o
)
S

i Actual Code Example

Load Mechanism

Here we use GRI-Mech 3.0 with mixture-averaged transport properties.
gas = GRI30('Mix")

Number of species
nsp = gas.nSpecies()

Number of elements
nel = gas.nElements()

Molar Masses
mmas = gas.molarMasses()

Atomic Weights

awgt = gas.atomicWeights() 7

Z \
AsC

i Actual Code Example

Auxiliary Functions

Define auxiliary function to write flamelet solutions into your library file.

def writeFlamelet(f, list):
for item in list:
if type(item) == types.StringType:
f.write(item+'")
else:
f.write("item™ +'")
f.write("\n")

Open flamelet library file and write number of solutions inside
flt = open('ch4.flt','w")
flt.write('N = ' + str(Nfl) + "\n")

Z \
AsC

i Actual Code Example

Initialize Flame

Create flame

f = CounterFlame(gas = gas, grid = initial_grid)

set the error tolerances

f.set(tol = tol_ss, tol_time = tol_ts)

f.fuel_inlet.set(massflux = mdot_f,
mole_fractions = comp_f,
temperature = tin_f)

f.oxidizer_inlet.set(massflux = mdot_o,
mole_fractions = comp_o,
temperature = tin_o)

construct the initial solution estimate. To do so, it is necessary to specify the fuel
species.

f.init(fuel = 'CH4")

E 5 \

Z \
AsC

4

£
T
Z
o
o)
S

i Actual Code Example

Set the state of the two inlets

ampl = 1.0

for ix in range(Nfl):
mflux = mdot_f*ampl
f.fuel_inlet.setMdot(mflux)
mflux = mdot_o*ampl
f.oxidizer_inlet.setMdot(mflux)

First disable the energy equation and solve the problem without refining the grid

f.set(energy = 'off")
f.solve(loglevel, 0)

Now specify grid refinement, turn on the energy equation, and solve again.
f.setRefineCriteria(ratio = 200.0, slope = 0.1, curve = 0.2, prune = 0.02)

f.set(energy = 'on')
f.solve(1) 7

TUTES
\V\s“ for

4

£
T
Z
o
o)
S

Actual Code Example

write solution

nz = f.flame.nPoints()
z = f.flame.grid()
T="FT()

u=f.u()

V = f.V()

for n in range(nz):
f.setGasState(n)
Y = gas.massFractions()
Define Bilger mixture fraction
Zbilger = BilgerMixtureFraction(Y)

writeFlamelet(flt, [Zbilger, z[n], u[n], V[n], T[n]]+list(gas.massFractions()))

7

\

Z \
AsC

i Actual Code Example

Increment mass flux amplification factor
ampl = ampl + 0.2

End of loop and close of flamalet library file
flt.close()

e

= Once the elemental flamelets are computed, a library with
entry variables of mean mixture fraction and variance can
be constructed by performing the appropriate weighting
with the assumed PDF.

Z \
AsC

Model Subgrid terms

i 0.3 i 0.2
0.275 0.15
02 I 0.25 02 0.1
w 0.225 0.05
g 0.2 0
< 0.175 -0.05
T I 0.15 -0.1
< 01 0125 0.1 -0.15
> I 0.1 -0.2
- 0.075 -0.25
- 0.05 -0.3
. 0.025
Oo 0
hs. Ws

\

Z A\
AsC

‘L Turbulent reacting jet

=

= Fully compressible reactive LES solver

<, With arbitrary complex chemistry using \
.~ 7 flamelet libraries (Cantera). Z\
AsSC

i Conclusions

= Constructing flamelet libraries using the Python
interface to Cantera is very convenient.

= No need to compile code, everything is
accomplished through scripting.

= Python lets you make calls to other libraries
directly so it can be easily integrated with other
numerical subroutines.

= Flamelet libraries of any complex chemistry can be
generated with little effort.

<
S W \
3 S
\o 1891 g
o)
9

A50C

