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i Introduction

= Application of turbulent combustion physics in the
development of subgrid models for LES.

= Activities:
= Development of subgrid-scale models.
= Numerics and implementation (patch solvers).
= Validation of canonical flows.

= Current goal is to capture statistics of reacting
shear flows (shear layers, jets and bluff body
stabilized turbulent flames).
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i People (Fluids Side)

= D. Meiron (ASCI)

= D.I. Pullin (SGS-LES Model), P.D. Dimotakis.
= D. Hill (Numerics), R. Deiterding (AMR).

= D. Goodwin (Cantera)
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The Virtual Test Facility (VTF
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LES Formulation

e Conservation of mass, momentum and energy are expressed in the usual in
terms of filtered density, p, velocity, #;, pressure p and the total sensible energy,
with conservation equation given by
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e The total sensible energy, E is given by
— ~ 1. . L
E= ﬁ(h + Eukuk) —p+ pk,
where k = (uju; — 4i;)/2 is the subgrid kinetic energy.

e The resolved shear viscosity, ji, and thermal conductivity, A, depend on tem-
perature as T9-7.

e The filtered enthalpy is decomposed into a resolved part and a subgrid part
through,

h= Y (D)W + hs, \
=1 /‘

where N is the number of species. .
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Closures

e The system of equations is closed by the equation of state,

N ~

- Y;
ﬁ=ﬁRO<T Z _'&+ws),

=1 Wi

where R? is the gas constant and W is the molecular weight of species 1.

e The quantities that need to be modeled are
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Chemistry Model

e The governing equation of Z is
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e Combustion is modeled through the conserved scalar approach with an as-
sumed Beta-pdf is used to close the problem

an—l(l _ Z)ng—l

Foga(Zi2,8) = B(n1,n2)

e Averages are obtained from
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e This can be used to obtain hs and ws,
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i Flamelet Libraries with Cantera

= 1D counterflow diffusion flame problem is used to construct
a flamelet library that is then loaded in the LES solver.

= The single counterflow flame example can be found in:

Cantera/python/examples/npflamel.py
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i Actual Code Example

Reference Conditions

# Initialization of Reference conditions

p = OneAtm # pressure

tin_f = 300.0 # fuel inlet temperature

tin_.o = 300.0 # oxidizer inlet temperature

mdot o = 0.5 # kg/m~2/s

mdot_ f = 0.25 # kg/m~2/s

L = 0.02 #m

comp_o = '02:0.21, N2:0.78, AR:0.01"; # air composition
comp_f = 'CH4:1% # fuel composition

# distance between inlets is 2 cm; start with an evenly-spaced 11-point grid
initial_grid = L*array([0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],'d")
Nfl=80 # number of flamalets to compute
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i Actual Code Example

Load Mechanism

# Here we use GRI-Mech 3.0 with mixture-averaged transport properties.
gas = GRI30('Mix")

# Number of species
nsp = gas.nSpecies()

# Number of elements
nel = gas.nElements()

# Molar Masses
mmas = gas.molarMasses()

# Atomic Weights

awgt = gas.atomicWeights() 7

Z \
AsC




i Actual Code Example

Auxiliary Functions

# Define auxiliary function to write flamelet solutions into your library file.

def writeFlamelet(f, list):
for item in list:
if type(item) == types.StringType:
f.write(item+'")
else:
f.write("item™ +'")
f.write("\n")

# Open flamelet library file and write number of solutions inside
flt = open('ch4.flt','w")
flt.write('N = ' + str(Nfl) + "\n")

Z \
AsC



i Actual Code Example

Initialize Flame

# Create flame

f = CounterFlame(gas = gas, grid = initial_grid)

# set the error tolerances

f.set(tol = tol_ss, tol_time = tol_ts)

f.fuel_inlet.set(massflux = mdot_f,
mole_fractions = comp_f,
temperature = tin_f)

f.oxidizer_inlet.set(massflux = mdot_o,
mole_fractions = comp_o,
temperature = tin_o)

# construct the initial solution estimate. To do so, it is necessary to specify the fuel
# species.

f.init(fuel = 'CH4")
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i Actual Code Example

# Set the state of the two inlets

ampl = 1.0

for ix in range(Nfl):
mflux = mdot_f*ampl
f.fuel_inlet.setMdot(mflux)
mflux = mdot_o*ampl
f.oxidizer_inlet.setMdot(mflux)

# First disable the energy equation and solve the problem without refining the grid

f.set(energy = 'off")
f.solve(loglevel, 0)

# Now specify grid refinement, turn on the energy equation, and solve again.
f.setRefineCriteria(ratio = 200.0, slope = 0.1, curve = 0.2, prune = 0.02)

f.set(energy = 'on')
f.solve(1) 7
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Actual Code Example

# write solution

nz = f.flame.nPoints()
z = f.flame.grid()
T="FT()

u=f.u()

V = f.V()

for n in range(nz):
f.setGasState(n)
Y = gas.massFractions()
# Define Bilger mixture fraction
Zbilger = BilgerMixtureFraction(Y)

writeFlamelet(flt, [Zbilger, z[n], u[n], V[n], T[n]]+list(gas.massFractions()))
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i Actual Code Example

# Increment mass flux amplification factor
ampl = ampl + 0.2

# End of loop and close of flamalet library file
flt.close()

e

= Once the elemental flamelets are computed, a library with
entry variables of mean mixture fraction and variance can
be constructed by performing the appropriate weighting
with the assumed PDF.
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Model Subgrid terms

i 0.3 i 0.2
0.275 0.15
02 I 0.25 02 0.1
w 0.225 0.05
g 0.2 0
< 0.175 -0.05
T I 0.15 -0.1
< 01 0125 0.1 -0.15
> I 0.1 -0.2
- 0.075 -0.25
- 0.05 -0.3
. 0.025
Oo 0
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‘L Turbulent reacting jet

=

= Fully compressible reactive LES solver

<, With arbitrary complex chemistry using \
.~ 7 flamelet libraries (Cantera). Z\
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i Conclusions

= Constructing flamelet libraries using the Python
interface to Cantera is very convenient.

= No need to compile code, everything is
accomplished through scripting.

= Python lets you make calls to other libraries
directly so it can be easily integrated with other
numerical subroutines.

= Flamelet libraries of any complex chemistry can be
generated with little effort.

<
S W \
3 S
\o 1891 g
o)
9

A50C



