
Using Cantera to construct
Flamelet Libraries for Large-Eddy

Simulation

Carlos Pantano
Graduate Aeronautical Laboratories

CALTECH

Introduction

 Application of turbulent combustion physics in the
development of subgrid models for LES.

 Activities:
 Development of subgrid-scale models.
 Numerics and implementation (patch solvers).
 Validation of canonical flows.

 Current goal is to capture statistics of reacting
shear flows (shear layers, jets and bluff body
stabilized turbulent flames).

People (Fluids Side)

 D. Meiron (ASCI)
 D.I. Pullin (SGS-LES Model), P.D. Dimotakis.
 D. Hill (Numerics), R. Deiterding (AMR).
 D. Goodwin (Cantera)

The Virtual Test Facility (VTF)

LES Formulation

Closures

Chemistry Model

Flamelet Libraries with Cantera

 1D counterflow diffusion flame problem is used to construct
a flamelet library that is then loaded in the LES solver.

 The single counterflow flame example can be found in:

Cantera/python/examples/npflame1.py

Actual Code Example

Initialization of Reference conditions
p = OneAtm # pressure
tin_f = 300.0 # fuel inlet temperature
tin_o = 300.0 # oxidizer inlet temperature
mdot_o = 0.5 # kg/m^2/s
mdot_f = 0.25 # kg/m^2/s
L = 0.02 # m

comp_o = 'O2:0.21, N2:0.78, AR:0.01'; # air composition
comp_f = 'CH4:1'; # fuel composition

distance between inlets is 2 cm; start with an evenly-spaced 11-point grid
initial_grid = L*array([0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],'d')
Nfl=80 # number of flamalets to compute

Reference Conditions

Actual Code Example

Here we use GRI-Mech 3.0 with mixture-averaged transport properties.
gas = GRI30('Mix')

Number of species
nsp = gas.nSpecies()

Number of elements
nel = gas.nElements()

Molar Masses
mmas = gas.molarMasses()

Atomic Weights
awgt = gas.atomicWeights()

Load Mechanism

Actual Code Example

Define auxiliary function to write flamelet solutions into your library file.

def writeFlamelet(f, list):
 for item in list:
 if type(item) == types.StringType:
 f.write(item+' ')
 else:
 f.write(`item`+' ')
 f.write('\n')

Open flamelet library file and write number of solutions inside
flt = open('ch4.flt','w')
flt.write('N = ' + str(Nfl) + '\n')

Auxiliary Functions

Actual Code Example

Create flame
f = CounterFlame(gas = gas, grid = initial_grid)
set the error tolerances
f.set(tol = tol_ss, tol_time = tol_ts)
f.fuel_inlet.set(massflux = mdot_f,
 mole_fractions = comp_f,
 temperature = tin_f)

f.oxidizer_inlet.set(massflux = mdot_o,
 mole_fractions = comp_o,
 temperature = tin_o)

construct the initial solution estimate. To do so, it is necessary to specify the fuel
species.
f.init(fuel = 'CH4')

Initialize Flame

Actual Code Example
Set the state of the two inlets
ampl = 1.0
for ix in range(Nfl):
 mflux = mdot_f*ampl
 f.fuel_inlet.setMdot(mflux)
 mflux = mdot_o*ampl
 f.oxidizer_inlet.setMdot(mflux)

 # First disable the energy equation and solve the problem without refining the grid
 f.set(energy = 'off')
 f.solve(loglevel, 0)

 # Now specify grid refinement, turn on the energy equation, and solve again.
 f.setRefineCriteria(ratio = 200.0, slope = 0.1, curve = 0.2, prune = 0.02)
 f.set(energy = 'on')
 f.solve(1)

Actual Code Example
 # write solution
 nz = f.flame.nPoints()
 z = f.flame.grid()
 T = f.T()
 u = f.u()
 V = f.V()

 for n in range(nz):
 f.setGasState(n)
 Y = gas.massFractions()
 # Define Bilger mixture fraction

Zbilger = BilgerMixtureFraction(Y)

writeFlamelet(flt, [Zbilger, z[n], u[n], V[n], T[n]]+list(gas.massFractions()))

Actual Code Example

 # Increment mass flux amplification factor
 ampl = ampl + 0.2

End of loop and close of flamalet library file
flt.close()

 Once the elemental flamelets are computed, a library with
entry variables of mean mixture fraction and variance can
be constructed by performing the appropriate weighting
with the assumed PDF.

Model Subgrid terms

These pre-computed tables are then loaded in the LES solver.

Turbulent reacting jet

 Fully compressible reactive LES solver
with arbitrary complex chemistry using
flamelet libraries (Cantera).

Conclusions

 Constructing flamelet libraries using the Python
interface to Cantera is very convenient.

 No need to compile code, everything is
accomplished through scripting.

 Python lets you make calls to other libraries
directly so it can be easily integrated with other
numerical subroutines.

 Flamelet libraries of any complex chemistry can be
generated with little effort.

