
Using Cantera to construct
Flamelet Libraries for Large-Eddy

Simulation

Carlos Pantano
Graduate Aeronautical Laboratories

CALTECH

Introduction

 Application of turbulent combustion physics in the
development of subgrid models for LES.

 Activities:
 Development of subgrid-scale models.
 Numerics and implementation (patch solvers).
 Validation of canonical flows.

 Current goal is to capture statistics of reacting
shear flows (shear layers, jets and bluff body
stabilized turbulent flames).

People (Fluids Side)

 D. Meiron (ASCI)
 D.I. Pullin (SGS-LES Model), P.D. Dimotakis.
 D. Hill (Numerics), R. Deiterding (AMR).
 D. Goodwin (Cantera)

The Virtual Test Facility (VTF)

LES Formulation

Closures

Chemistry Model

Flamelet Libraries with Cantera

 1D counterflow diffusion flame problem is used to construct
a flamelet library that is then loaded in the LES solver.

 The single counterflow flame example can be found in:

Cantera/python/examples/npflame1.py

Actual Code Example

Initialization of Reference conditions
p = OneAtm # pressure
tin_f = 300.0 # fuel inlet temperature
tin_o = 300.0 # oxidizer inlet temperature
mdot_o = 0.5 # kg/m^2/s
mdot_f = 0.25 # kg/m^2/s
L = 0.02 # m

comp_o = 'O2:0.21, N2:0.78, AR:0.01'; # air composition
comp_f = 'CH4:1'; # fuel composition

distance between inlets is 2 cm; start with an evenly-spaced 11-point grid
initial_grid = L*array([0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],'d')
Nfl=80 # number of flamalets to compute

Reference Conditions

Actual Code Example

Here we use GRI-Mech 3.0 with mixture-averaged transport properties.
gas = GRI30('Mix')

Number of species
nsp = gas.nSpecies()

Number of elements
nel = gas.nElements()

Molar Masses
mmas = gas.molarMasses()

Atomic Weights
awgt = gas.atomicWeights()

Load Mechanism

Actual Code Example

Define auxiliary function to write flamelet solutions into your library file.

def writeFlamelet(f, list):
 for item in list:
 if type(item) == types.StringType:
 f.write(item+' ')
 else:
 f.write(`item`+' ')
 f.write('\n')

Open flamelet library file and write number of solutions inside
flt = open('ch4.flt','w')
flt.write('N = ' + str(Nfl) + '\n')

Auxiliary Functions

Actual Code Example

Create flame
f = CounterFlame(gas = gas, grid = initial_grid)
set the error tolerances
f.set(tol = tol_ss, tol_time = tol_ts)
f.fuel_inlet.set(massflux = mdot_f,
 mole_fractions = comp_f,
 temperature = tin_f)

f.oxidizer_inlet.set(massflux = mdot_o,
 mole_fractions = comp_o,
 temperature = tin_o)

construct the initial solution estimate. To do so, it is necessary to specify the fuel
species.
f.init(fuel = 'CH4')

Initialize Flame

Actual Code Example
Set the state of the two inlets
ampl = 1.0
for ix in range(Nfl):
 mflux = mdot_f*ampl
 f.fuel_inlet.setMdot(mflux)
 mflux = mdot_o*ampl
 f.oxidizer_inlet.setMdot(mflux)

 # First disable the energy equation and solve the problem without refining the grid
 f.set(energy = 'off')
 f.solve(loglevel, 0)

 # Now specify grid refinement, turn on the energy equation, and solve again.
 f.setRefineCriteria(ratio = 200.0, slope = 0.1, curve = 0.2, prune = 0.02)
 f.set(energy = 'on')
 f.solve(1)

Actual Code Example
 # write solution
 nz = f.flame.nPoints()
 z = f.flame.grid()
 T = f.T()
 u = f.u()
 V = f.V()

 for n in range(nz):
 f.setGasState(n)
 Y = gas.massFractions()
 # Define Bilger mixture fraction

Zbilger = BilgerMixtureFraction(Y)

writeFlamelet(flt, [Zbilger, z[n], u[n], V[n], T[n]]+list(gas.massFractions()))

Actual Code Example

 # Increment mass flux amplification factor
 ampl = ampl + 0.2

End of loop and close of flamalet library file
flt.close()

 Once the elemental flamelets are computed, a library with
entry variables of mean mixture fraction and variance can
be constructed by performing the appropriate weighting
with the assumed PDF.

Model Subgrid terms

These pre-computed tables are then loaded in the LES solver.

Turbulent reacting jet

 Fully compressible reactive LES solver
with arbitrary complex chemistry using
flamelet libraries (Cantera).

Conclusions

 Constructing flamelet libraries using the Python
interface to Cantera is very convenient.

 No need to compile code, everything is
accomplished through scripting.

 Python lets you make calls to other libraries
directly so it can be easily integrated with other
numerical subroutines.

 Flamelet libraries of any complex chemistry can be
generated with little effort.

