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Outline

I. How to customize the python interface
II. Structure of Flame Objects (C++/Python)

III.  Specific Modifications for the electrostatic interaction with 
flames 

* Also see:
• “One Dimensional Flames” lecture presented at the 2004 

Workshop by David Goodwin, 
• Kee, Coltrin and Glarborg (2003)
• Modifications to add freely propagating flames. 
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Customization Options

A) Data/Function can be derived from existing python interface

B) Data or Function exists in C++  but cannot get to through the python 
interface

C) Add new functionality to existing class

D) Add a new class

• sub-classing base class

• entirely new
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Steps to add new functionality

1) Modify/Create C++, sources, headers and Makefiles

2) Modify/Create a “flat” interface for C++ classes/methods

3) Modify/Create python interface

4) Modify/Create python Classes/methods which 
manipulate the C++ objects
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Manipulate C++

Create C++ sources ( .cpp)

Create C++ headers ( myclass.h )

Add the sources of any new .cpp files to Makefile and 
Makefile.in

OBJS = MultiJac.o MultiNewton.o\
Newton_utils.o OneDim.o StFlow.o\
boundaries1D.o refine.o Sim1D.o\

boundEfield.o StFlowEfield.o

* NOTE: The configure process creates 
Makefile from Makefile.in, thus any 
changes made to Makefile will be 
deleted
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Build Generic Language Interface

Create a cabinet for the class

Create/Modify new/delete methods

Add functions into source files

Create headers

Create python interfaces:
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Interfacing C++ with Other Languages

What is required to interface two languages ?

• The languages must communicate though common data types

• “Flat Interface” - Gray et al.

Data types Available 

• Least Common Denominator

• integer, double ( real*8), float( real*4), char

• plus contiguous memory blocks of the above
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Creating/Using a Cabinet

Cabinet to store 1D flow domains
- vector of Domain1D

Cabinet<Domain1D>*   Cabinet<Domain1D>::__storage = 0;

Creating an object and store it in the Cabinet of the Base Class
int DLL_EXPORT inlet_new() {

try {
Inlet1D* i = new Inlet1D();
return Cabinet<Domain1D>::cabinet()->add(i);

}
catch (CanteraError) { return -1; }

}

Wrapper Function for access to a base class member
int DLL_EXPORT domain_nPoints(int i) {

return _domain(i)->nPoints();
}
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Creating/Using a Cabinet

To Access a function of a derived class
- “upcast” the pointer to the derived class type
- _bdry upcasts from Domain1D to bdry
double DLL_EXPORT inletEfield_current(int i) {

try {
Inlet1D_Efield* inlet = (Inlet1D_Efield*) _bdry(i);
return inlet->current();

}
catch (CanteraError) { return DERR; }

}

Prototype of the function located in ctonedim.h
double DLL_IMPORT inletEfield_current(int i);
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Use genpy.py to create Python interface

Execute to generate the interface
python genpy.py ctonedim.h > ctonedim_methods.cpp

Generates two additional files:

1) Python Wrapper Class

pyctmyclass.py

2) Function Prototype for interface

pymethods.h
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Move/Modify Python Interface Files

(3) Move C++/Python interface functions

clib/src/ctonedim_methods.cpp to

python/src/ctonedim_methods.cpp

*additional editing must be done for functions with 
arrary argument

Append function prototypes in
clib/src/pyctonedim_methods.h to 

python/src/methods.h

(4) Move Python wrapper class definitions

clib/src/ctoedim.py to

python/Cantera/Onedim
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Python/C++ Interface

Python: 
def current(self):

return _cantera.inletEfield_current(self._hndl) 
C++:
static PyObject *
py_inletEfield_current(PyObject *self, PyObject *args)
{

double _val;
int i;
if (!PyArg_ParseTuple(args, "i:inletEfield_current", &i)) 

return NULL;

_val = inletEfield_current(i); 
if (int(_val) == -1) return reportCanteraError();
return Py_BuildValue("d",_val);

}
The index in the objects “cabinet”
is the first python argument

All classes have
an integer index
to the C++ object
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Python/C++ Interface
def setMassFractions(self, y):

return _cantera.outletEfield_setMassFractions(\
self._hndl, y, len(y) )

static PyObject *
py_outletEfield_setMassFractions(PyObject *self, PyObject *args)
{

int _val;
int n;
int i;
PyObject *px;
if (!PyArg_ParseTuple(args, 

"iOi:outletEfield_setMassFractions", &i, &px, &n)) 
return NULL;

PyArrayObject* y_array  = (PyArrayObject*) px;
double* y = (double*) y_array->data;        
_val = outletEfield_setMassFractions(i,y,n); 
if (int(_val) == -1) return reportCanteraError();
return Py_BuildValue("i",_val);

}

“O” stands for user defined type object argument ( an arra
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C++ Classes used for Flames

Domain1D 

Outlet 

StFlow

AxiFlow

Bndy1D

Inlet 

Sim1D

• “drives” the solution process

• No physical processes

• Non-linear equation solver

• Contains:

• vector of Domain1D’s

• solution vector

OneDim

Sim1D
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C++ Classes used for Flames

Domain1D

• Contains Physical Processes

• eval() – calculate “residual”

OneDim

Sim1D

Domain1D 

Outlet 

StFlow

AxiFlow

Bndy1D

Inlet 
StFlow

• Discretize Cons. Eq.’s

• Constitutive Relations

Bndry1D

• Discretize B.C.’s

• May modify “residual”
of an adjacent  Flow 
Object
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Python Classes used for Flames
Stack

BurnerFlame

CounterFlame

StagnationFlame

Flame class 

• Shadow Sim1D

• Specialized for specific type of 
simulation

Other classes shadow analogous C++ ver.

Burner Flame

Inlet - AxiFlow - Outlet

Counter Flame

Inlet - AxiFlow - Inlet

Stagnation Flame

Inlet - AxiFlow - Wall

Inlet - AxiFlow - Reacting Surface

Domain1D

Outlet 

StFlow

AxiFlow

Bndy1D

Inlet 

Surface 
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The solution vector

The Sim1D solution vector is a double <vector> which contains the 
unknowns for all the components of all the domains which are 
contained in the instance of the particular Sim1D object 

Ordering:

solution vector of a specific domain is contiguous in memory 

the solution components at grid location are contiguous

Burner Flame

( )Tm" ( ) ( ) 10 −ΛΛ Nii YTVuYTVu ( )s

Counter Flame

( )Tm" ( ) ( ) 10 −ΛΛ Nii YTVuYTVu ( )Tm"



EDH, ST-70, Huckaby, Interfacing FLUENT and Cantera, First Cantera Workshop, 30th International Symposium on Combustion, July 2004

C++ Objects used for Flames
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Structure of a Flame Object
(Python)
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Structure of a Flame Object
(Python)
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Outline

I. How to customize the python interface

II. Structure of C++ and Python Flame Objects

III.  Specific Modifications for the electrostatic interaction 
with flames 
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Governing Equations
(Goodwin 2004, Kee, Coltrin Glarborg 2003, Smooke and Giovangigli 1991, 

Penderson and Brown 1993 )
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Specialize Base Classes

1. StFlowEfield (StFlow)

1. Additional solution variable, φ

2. Drift Flux as part of species flux

3. Electron Transport Model

2. InletEfield (Inlet)

1. Electrical b.c.’s

3. OutletEfield (Outlet) 

1. Electrical b.c.’s

2. Other b.c.’s for Y
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Flat Flame Burner – Boundary Conditions
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Flat Flame Burner – Apparatus
Downstream Electrode

16/in x 16/in
0.040“
0.023”
39.9 %
2 cm

Number of Openings
Opening Size (Square)
Wire Diameter 
Open Area (Percentage):
Distance from Burner

Burner (Ground)

60 mm
120 mm

Burner Diameter
Housing Diameter 
*Nitrogen co-flow

McKenna (www.flatflame.com)
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Flat Flame Burner Results

Compare to GRI 3.0

Based on CH mole fraction 
profile the 31 Step mechanism 
predicts a different flame 
position than the full GRI 3.0.

Temperature profile shows 
different amount of heat 
transferred to the burner.

All species profiles are 
mole fractions



EDH, ST-70, Huckaby, Interfacing FLUENT and Cantera, First Cantera Workshop, 30th International Symposium on Combustion, July 2004

Flat Flame Burner Results

Comparison is good with µ=0.4, 
despite the poor prediction of the 
temperature profile (flame position ).

Several Simulation are performed
at different applied potentials, and
Different mobilities ( µ )

PB93 – Penderson and Brown (1993)

µ=0.4 – Goodings et. al (2001)

Burner attracts ions Burner attracts electrons
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Flat Flame Burner Results

Depletion of charged species at 
increased voltage
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Opposed Flow Burner – Boundary Conditions

V

Oxidizer or Fuel Inlet
Temperature

Flow rate
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Opposed Flow Flame

There is a solution to the equations 
without the axial momentum equation, so 
the axial pressure simply balances the 
other terms in the equation without 
modification to the other variables in the 
system

The flame position has not changed 
due to the electric field.   An additional 
mechanism not included in the 
equations must be considered 
(multidimensional effect, non-
uniquenes ? ).
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Opposed Flow Flame

The mole-fraction of H3O+ has 
decreased  about 2 orders of 
magnitude after the application of a 
strong electric field.  

Whereas the electron mole-fraction 
decreases about 4 orders of 
magnitude.

The mole fraction of HCO+ is 
relatively constant, with a slight shift in 
position due to the field
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Opposed Flow Flame

In contrast to the 
flat flame, the 
current voltage 
behavior is nearly 
symmetric
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