Creating Phase and Interface Models

D. G. Goodwin

Division of Engineering and Applied Science California Institute of Technology

> Cantera Workshop July 25, 2004

Every Cantera simulation involves one or more phases of matter

Phases and interfaces involved in a hypothetical solid-oxide fuel cell simulation

phases:

metal catalysts (2) electrolyte gas phases (2)

interfaces: electrolyte/metal (2) metal/gas (2) electrolyte/gas (2) triple phase boundaries (2)

5 phases and 8 interfaces!

(of course, many problems may only involve 1 phase, or 1 phase + 1 interface)

Properties of each phase and/or interface are needed

- Composition
 - elements and species
 - atomic and molecular weights
 - mole fractions, mass fractions, concentrations
- Thermodynamic properties
 - Temperature, pressure, density
 - internal energy, enthalpy, entropy, Gibbs free energy,...
 - heat capacities, thermal expansion coefficients, compressibilities, ...
- Transport properties
 - Viscosity, diffusion coefficients, thermal conductivity, electrical conductivity, ...
- Kinetics
 - reaction stoichiometry
 - rates of progress
 - equilibrium constants
 - species production rates

Phase Models

- Specification of chemical composition
 - elements
 - species, and their elemental composition
- Specification of reaction stoichiometry
- Complete set of algebraic equations to compute all required
 - thermo properties
 - transport properties
 - reaction rates
- Numerical values for all parameters in the equations
- Phase models incorporate sub-models
 - Thermo model
 - Transport model
 - Kinetics model

Interface Models

- Specification of the phase(s) adjacent to the interface
- Specification of chemical composition of interfacial species, if any
- Specification of reaction stoichiometry for heterogeneous reactions involving bulk species in any adjacent phase and/or interfacial species
- Complete set of algebraic equations to compute all required
 - thermo properties
 - transport properties (not yet implemented)
 - reaction rates
- Numerical values for all parameters in the equations

Phase and interface models are specified in text files

- Files that can be edited with any text editor, shared, e-mailed, etc.
- Separates phase and interface definition from the simulation itself; allows re-using same phase and interface models for many different applications
- Multiple phases and/or interfaces can be specified in one file
- Species and reaction definitions can be imported from other input files

CTI and CTML files

- The files described here will be called 'CTI' files because they have the default extension '.cti' (CanTera Input)
- These files are designed to be easy for people to write and read
- They are hard for machines to read, however, since they assume chemical knowledge (most) machines don't have (e.g. how to interpret a chemical equation)

CTML

- XML is a widely-used meta-language for data
 - designed to be easy for machines to parse
 - "dumbed down": in good XML code, nothing is assumed, everything is stated explicitly
 - too verbose for direct human writing or reading
 - good as an intermediate format designed for machine use
 - many browsers, validating parsers, editors, etc. developed for XML
- Cantera defines its own XML-based markup language called CTML
 - designed to represent quantities needed by Cantera (rate coefficients, etc.) in XML
 - borrows some features from CML (Chemical Markup Language)
 - as other XML standards develop for kinetics, CTML may evolve for compatibility

The CTI to CTML preprocessor

- CTI files are designed to be written and read by humans
- When a CTI file is specifed as an input file in Cantera, it is converted on-the-fly to CTML, and then the CTML is parsed
- The conversion process is done automatically by invoking the Python interpreter
- a single Python script called ctml_writer.py is used. The full Cantera Python interface does not need to be installed to process CTI files.
- CTI files are actually executable Python scripts, and may include any valid Python code

7/25/04

Phases and Interfaces

- Most Cantera simulations require properties of at least one phase of matter
 - For combustion simulations, this is often a reacting ideal gas mixture
 - But solid or liquid phases may also be required
- For heterogeneous combustion problems, properties of the interfaces between phases are also needed

- A widely-used file format for combustion problems is the one used with the Chemkin software package
- But this format is inconvenient for several reasons
 - Not extensible no way to add additional parameters for non-ideal phases
 - Only supports one species thermo parameterization (NASA polynomials)
 - Thermo data format is holdover from punched-card era; fixed-column format prone to errors

The Cantera input file format is designed to be...

- free format
- intuitive to write
- clear and understandable to read
- extensible

Directives and Entries

- CTI files consist of two types of elements:
 - entries specify a phase, interface, element, species, or reaction
 - **directives** set options determining how entries will be processed
- Both have a function-like syntax:
 - <name>(<keyword1> = <value1>, <keyword2> = <value2>, ...)
 - Example: the units directive fields (keyword/value pairs) may appear in any order

```
units(length = "cm", time = "s", quantity = "mol",
act_energy = "cal/mol")
```

Setting the Default Units for Input

units(length = "cm", time = "s", quantity = "mol", act_energy = "cal/mol")

- Default Cantera unit system is SI (meters, seconds, kmol, Joules/kmol)
- This is often *not* the most convenient system for input
- Any desired unit system may be specified with the units directive
- Input values will be converted to SI when they are read in
- Good practice to set the unit system at the top of the file

A simple phase: argon gas

- The ideal_gas entry is used to define a phase that obeys the ideal gas law
- The phase definition listed above states that:
 - Only element Ar may be present
 - Only one species, named 'AR', may be present
 - The object state should be initially set to T = 300 K, P = 1 atm.

The Element Database

- Element attributes (the atomic weight) are looked up by symbol in database file 'elements.xml'
- Database file contains elements of the periodic table with natural abundance atomic weights
- Isotopes D and Tr also included
- Also contains an element 'E' representing an electron, to use in specifying the composition of charged species

<ctml>
 <elementData caseSensitive="no">
 <element name="H" atomicWt = "1.00794"/>
 <element name="D" atomicWt = "2.0147"/>
 <element name="Tr" atomicWt = "3.016327"/>
 <element name="He" atomicWt = "3.016327"/>
 <element name="He" atomicWt = "4.002602"/>
 <element name="Li" atomicWt = "6.941"/>
 <element name="Be" atomicWt = "6.941"/>
 <element name="B" atomicWt = "9.012182"/>
 <element name="B" atomicWt = "10.811"/>
 <element name="C" atomicWt = "12.011"/>
 <element name="N" atomicWt = "14.00674"/>
 <element name="N" atomicWt = "15.9994"/>
 <element name="F" atomicWt = "18.9984032"/>
 <element name="N" atomicWt = "20.1797"/></element name="N" atomicWt = "20.1797"/>

initial part of elements.xml

Cantera Workshop

7/25/04

Defining Species 'AR'

species(name = "AR", atoms = " Ar:1 ")

- The argon gas phase definition references a species 'AR'
- This species needs to be defined somewhere in the input file
- Order (before or after the phase entry) doesn't matter, because the entire file is read before the entries are processed
- A minimal definition of species 'AR' is shown here, that specifies only the elemental composition

The complete input file (so far)

This simple input file constitutes a valid definition of an argon ideal gas (although not one that much can be done with yet).

Adding Thermodynamic Properties

- So far, we have not said anything about the thermodynamic properties of the one species 'AR'
- For an ideal gas mixture, computing the thermodynamic properties requires that the following (or equivalent) be specified for each species:
 - the function $c_p^0(T) T_{min} < T < T_{max}$
 - h⁰(T_{ref})
 - s⁰(T_{ref})
- Here a superscript 0 denotes properties evaluated under "standard state" conditions

Standard-State Properties

Ideal gas species

$$c_p^0 = \lim_{p \to 0} c_p(T)$$

$$h^0 = \lim_{p \to 0} h(T)$$

$$s^0 = \lim_{p \to 0} \left[s(T, p) - R \ln(p_{ref} / p) \right]$$

- Non-ideal gas models typically use ideal gas species data, then apply corrections for finite density
- Condensed phases

$$c_p^0 = c_p(T, p_{ref})$$
$$h^0 = h(T, p_{ref})$$
$$s^0 = s(T, p_{ref})$$

Specifying species thermo properties

- The *thermo* field of the **species** entry is used to specify parameters to compute the species std. state properties
- This field should contain an embedded entry of type const_cp, Shomate, or NASA
- We'll start with **const_cp**, since it is the simplest and can be used for argon.

Argon gas object now produces the correct thermo properties

Temperature-dependent c_p⁰

 For argon, c_p⁰ is really constant, so the const_cp model can be used to specify the properties

- For molecular species, however, c_p⁰ is temperaturedependent
- Two other parameterizations implemented:
 - Shomate function
 - NASA polynomials

The Shomate Parameterization

• Used in the NIST Chem WebBook http://webbook.nist.gov

$$c_{p}^{0} = A + Bt + Ct^{2} + Dt^{3} + E/t^{2}$$

$$h^{0} = At + Bt^{2}/2 + Ct^{3}/3 + Dt^{4}/4 - E/t + F$$

$$s^{0} = A \ln(t) + Bt + Ct^{2}/2 + Dt^{3}/3 - E/(2t^{2}) + G$$

$$webBook$$

$$t = T/1000$$

Temperature (K)	298 1300.	1300 6000.
A	-0.703029	85.81217
В	108.4773	11.26467
С	-42.52157	-2.114146
D	5.862788	0.138190
E	0.678565	-26.42221
F	-76.84376	-153.5327
G	158.7163	224.4143
Н	-74.87310	-74.87310
Reference	Chase, 1998	Chase, 1998
Comment	Data last reviewed in March, 1961	Data last reviewed in March, 1961

Shomate Syntax

Single temperature range:

Two temperature ranges:

The NASA Polynomial Parameterization

- Used in Chemkin and older versions of NASA equilibrium program
- Coefficients for many different molecules available from <u>http://www.ca.sandia.gov/HiTempThermo/index.html</u>

CH4 110203H 4C1 0 0G 300.000 4000.000 1000.00 0 1 2 0.47238333E+00 0.12680758E-01-0.55093741E-05 0.11295575E-08-0.89103779E-13 3 4 0.16199090E+02 0.38717898E+01-0.42480466E-02 0.24540181E-04 4 -11-0.10144425E+05 0.66008135E+00 0.63010622E

$$\frac{c_p^0}{R} = a_0 + a_1 T + a_2 T^2 + a_3 T^3 + a_4 T^4$$

$$\frac{h^0}{RT} = a_0 + \frac{a_1}{2} T + \frac{a_2}{3} T^2 + \frac{a_3}{4} T^3 + \frac{a_4}{5} T^4 + \frac{a_5}{T}$$

$$\frac{s^0}{R} = a_0 \ln T + a_1 T + \frac{a_2}{2} T^2 + \frac{a_3}{3} T^3 + \frac{a_4}{4} T^4 + a_6$$

program 'ck2cti' will convert this format to Cantera format

Cantera Workshop

7/25/04

NASA Polynomial Syntax

Single temperature range:

```
thermo = NASA(range = (Tmin, Tmax),
coeffs = (a0, a1, a2, a3, a4, a5, a6))
```

Two temperature ranges:

A gas mixture: air

```
units(length = "cm", time = "s", quantity = "mol", act_energy = "cal/mol")
ideal_gas(name = "air",
         elements = " O N Ar ",
         species = """ O O2 N NO NO2 N2O N2 AR """,
         initial_state = state(temperature = 300.0,
                               pressure = OneAtm.
                              mole_fractions = '02:0.21, N2:0.78, AR:0.01')
         )
                                                        only one species entry shown
species(name = "NO",
       atoms = " N:1 0:1 ".
       thermo = (
                  NASAC [ 200.00, 1000.00], [ 4.218476300E+00, -4.638976000E-03,
                                 1.104102200E-05, -9.336135400E-09, 2.803577000E-12,
                                 9.844623000E+03, 2.280846400E+00]),
                  NASA( [ 1000.00, 6000.00], [ 3.260605600E+00, 1.191104300E-03,
                                 -4.291704800E-07, 6.945766900E-11, -4.033609900E-15,
                                 9.920974600E+03, 6.369302700E+007 )
       note = "RUS 78"
                                      Cantera Workshop
7/25/04
```

Importing Species Definitions

- Phase definitions can *import* species already defined in another file
- Saves having to re-enter species entries
- A *complete* input file for air that imports species from file gri30.xml:

This input file builds a complete model for air, just as if the species definitions had been entered in the input file

temperature pressure density mean mol. weight	300 101325 1,17681 28,9697		
	1 kg	1 kmol	
enthalpy internal energy entropy Gibbs function heat capacity c_p heat capacity c_v	1893,98 -84207,6 6866,03 -2,05792e+06 1003,06 716,05	5.487e+04 -2.439e+06 1.989e+05 -5.962e+07 2.906e+04 2.074e+04	J/K J J J J
	Х	Y	
0 02 N N0 N02 N20 N20 AR	0.000000e+00 2.100000e-01 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 7.800000e-01 1.000000e-02	0.000000e+00 2.319575e-01 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 7.542530e-01 1.378956e-02	

Importing from multiple sources

• Species definitions can be kept in separate files, organized by compound type, data source, or in any other way

- This specifies the following species:
 - import all species defined in files 'silanes.xml' and 'oh.xml'
 - import SiO and SiO2 from file 'si_oxides.xml'
 - add species SiH2O defined in this file

Adding Reactions

- At this point, we can construct gas mixtures, but we have not specified any reactions.
- Such definitions are perfectly usable for problems that do not involve kinetics.
- But of course to do kinetics problems, we need to supplement what we have so far with a speification of what reactions we will consider, and their rate parameters.
- Now we'll look at how to add reactions to phases

The reaction entry

short form:

reaction("O + H2 <=> H + OH", [3.87000E+04, 2.7, 6260])

sequence of 3 numbers interpreted as A, b, E in Arrhenius expression

$$k_f = AT^b \exp(-E / RT)$$

long form:

reaction(equation = "O + H2 <=> H + OH", kf = Arrhenius(3.87000E+04, 2.7, 6260), id = 'oh-1')

Reaction rate expression

$$q_{fwd} = k_f \prod_j C_j^{\nu^{(r)}_j}$$
$$k_f = AT^b \exp(-E / RT)$$

if reversible,

$$q_{rev} = k_r \prod_j C_j^{v_j^{(p)}}$$
$$k_r = \frac{k_f}{K_c}$$

Specified reaction orders for global reactions

• Sometimes global reactions have measured rate laws of the form

$$q_{fwd} = k_f \prod_j C_j^{R_j}$$

where R_i is an empirical reaction order

• To specify reaction orders, use the *order* field:

- Note that the units of k_f are affected by using empirical reaction orders
- Reaction orders can only be specified for irreversible reactions

The Reaction Equation

- Conventions mostly follow those used in the Chemkin-II software package
- All species names must be separated by whitespace
 - "О + H2 <=> ОН +Н" is OK
 - "O+H2<=>OH+H" is not OK, and will result in an undeclared species error for species 'O+H2' and 'OH+H'
 - the CK2CTI utility automatically adds spaces when converting Chemkin input files.
- Stoichiometric coefficients must be integers
- equality sign
 - "<=>" or "=": specifies that the reaction is reversible, and the reverse rate is to be computed from detailed balance.
 - "=>" or "->": specifies that the reaction is irreversible, and the reverse rate is to be set to zero.

7/25/04

The Reaction Equation (cont'd)

"H + O + M = OH + M"
"CH4 + M = CH3 + H + M"

If 'M' is specified as a reactant or product (should be on both sides of the equation), then this denotes a third-body collision partner. Use only with entry type **three_body_reaction**

• "CH4 (+M) = CH3 + H (+M)"

Including '(+M)' denotes a pressure-dependent falloff reaction. Use only with entry type **falloff_reaction**

Three-body reactions

- Third-body collision partner required to conserve energy and momentum
 - collisional dissociation reactions H2O + M -> OH + H + M
 - association (recombination) reactions
 - OH + H + M -> H2O + M

- This set of slides ends here
- Please refer to the document 'definingphases.pdf' on the CD for further information on defining phase and interface models.