
One-Dimensional Flames

David G. Goodwin

Division of Engineering and
Applied Science

California Institute of Technology

7/25/04 Cantera Workshop

Several types of flames can be modeled as
"one-dimensional"

A burner-
stabilized flat
flame

A premixed
stagnation-point
flame

A non-premixed
counterflow flame

7/25/04 Cantera Workshop

One-Dimensionality

 These flames are 1D in the sense that, when
certain conditions are fulfilled, the governing
equations reduce to a system of ODEs in the axial
coordinate

 This occurs either because the flow is physically 1D
(no radial velocity component), or...

 The flow is physically 2D, but a similarity
transformation reduces the problem dimensionality
to 1D

7/25/04 Cantera Workshop

One-dimensional flames are only one type
of 1D reacting-flow problem

fuel inlet

gas flow

anode

electrolyte

cathode

gas flow

air inlet

Fuel cell test facility

7/25/04 Cantera Workshop

Thin film deposition

showerhead

gas flow

film

Stagnation-flow chemical
vapor deposition reactor

surface

substrate

7/25/04 Cantera Workshop

A "Stack" of domains

"Domains"

Cantera provides capabilities to solve
general axisymmetric 1D problems

 Each domain represents a distinct phase, flowfield, or interface
 a gas flow
 an inlet or outlet
 a surface
 a solid ...

7/25/04 Cantera Workshop

Multi-Physics Simulations

 Physics may be different in each domain

 Each domain has its own set of variables (components) and
governing equations

 Spatially-extended domains alternate with "connector" or
"boundary" domains that provide the coupling

 Solution determined for all domains simultaneously in fully-
coupled, fully-implicit way

7/25/04 Cantera Workshop

General Structure
 Applies for any 1D problem: flame, fuel cell stack, CVD

stagnation flow, ...
 A 1D problem is partitioned into domains

extended spatial domains define governing equations

gas 1 gas 2porous
plug

boundary domains provide boundary / interfacial conditions

inlet flux
matcher 1

flux
matcher 2 surface

Example

7/25/04 Cantera Workshop

Grids imposed on spatial domains

z
z0 z2 zn-1 zn zn+1

spatial domain boundaries coincide

each domain refines its grid separately to resolve its
solution

7/25/04 Cantera Workshop

Domain Variables

 Each type of domain has a specified set of variables at each grid
point

 Examples
 an axisymmetric flow domain -

 K + 4 variables per point
 u, V, T, Λ, Y1, ..., YK

 a surface domain
 K + 1 variables at one point only
 T, coverages of all surface species

7/25/04 Cantera Workshop

Solution Vector

Domain 0 Domain m Domain M… …

Point 0 Point j Point Jm… …

φ = []

Var 0 Var n Var Nm… …

Variables are ordered first by domain, then by point in the domain.
Note that each domain m may have a different number of points
Jm, and a different number of variables per point Nm. All ordering is
done left-to-right.

7/25/04 Cantera Workshop

Solution Method

 Finite-difference flow equations to form a system of
nonlinear algebraic equations

 Use a hybrid Newton / time-stepping algorithm to
solve the equations

 Adaptively refine / coarsen grid to resolve the
profiles, or remove unnecessary points if over-
resolved

7/25/04 Cantera Workshop

Residual Function

 In each domain, there is an equal number of equations and
unknowns at each point

 The nth equation at the jth point in the mth domain has the
form

Fj,m,n(φ) = 0

where Fj,m,n depends only on solution variables at points j, j-1,
and j+1

 Therefore, the Jacobian of this system of equations is
banded.

7/25/04 Cantera Workshop

The residual equations are solved using a
variant of Newton’s Method

linearize about solution estimate ! (0) :

Flin,i

(0)
= Fi (!

(0)) +
"Fi
"! j !=!(0)j

(! j $! j

(0))

solve linear problem to generate new estimate of !:

Flin (!
(1)) = 0,

! (1)
= ! (0) $ J

(0)%& '(
$1

F
(0)

where Ji, j = "Fi / "! j

Classical Newton's method:

7/25/04 Cantera Workshop

Quadratic convergence

 If F is linear, this leads to the exact solution φ∗ in 1
step

 If F is quadratic, then repeating this process
produces a convergent sequence of solution
estimates

with the error decreasing quadratically:

lim
n!"

(n+1) $#* = A # (n) $#*
2

! (0),! (1),! (2),! (3),...

7/25/04 Cantera Workshop

Transient Problem

 If Newton iteration fails to find the
steady-state solution, we attempt
to solve a psuedo-transient
problem with a larger (perhaps
much large) domain of
convergence

 This problem is constructed by
adding transient terms in each
conservation equation where this
is physically reasonable

 This may not be possible for
algebraic constraint equations;
these are left unmodified

A
d

!

!

dt
= F(
!

!)

F(! (n+1)) " A
! (n+1) "! (n)

#t
= 0

 Let A be a diagonal matrix
with 1 on the diagonal for
those equations with a
transient term, and 0 on the
diagonal for constraint
equations.

 Then the modified problem is
as shown above.

7/25/04 Cantera Workshop

Transient Problem (cont'd)

 This is of the form

 Note that if A = I (all equations have transient terms), then for sufficiently small time
step size this transient residual function approaches a linear problem

 In this case, there will be some non-zero Δt for which the Newton algorithm converges
for the transient problem.

 But note: if A has zeros on diagonal (algebraic constraints), and the initial solution
does not satisfy these constraints, then there is no guarantee that the transient
Newton problem will converge, no matter how small the step size

 In this case, there is nothing to do but try to generate by some other means a better
starting estimate that more nearly satisfies the algebraic constraints

F
transient

(! (n+1);! (n),"t) = 0

7/25/04 Cantera Workshop

Time step until solution enters s.s. domain of
convergence, then proceed to solution using s.s. Newton

 Take a few time steps

 Try to solve steady-
state problem

 If not yet in steady-
state domain of
convergence, take a
few more time steps

 Repeat until steady-
state Newton succeeds

7/25/04 Cantera Workshop

A larger domain of convergence is achieved by
using a damped Newton method

 Compute a Newton step

 If the step carries the solution outside prescribed limits, determine the
scalar multiplier required to bring it back in

 Starting with this (possibly scaled) new solution vector,
backtrack along the Newton direction until a point is found where the
next Newton step would have a smaller norm than the original
undamped, unscaled Newton step

 If such a point can be found, accept the damped Newton step

 Otherwise abort and try time-stepping for a while

 Repeat until the solution converges, or a damped Newton step fails.

7/25/04 Cantera Workshop

The Jacobian

 By far the most CPU-intensive operation in this algorithm is
evaluating the Jacobian matrix

 Exact Jacobians are not required, so try to re-use previously-
computed Jacobians

 Only recompute J if:
 The damped Newton algorithm failed, and the Jacobian is out-of-date, or
 a specified maximum number of times it may be used has been reached

 Note that switching between transient and steady-state modes only
adds/subtracts a constant from the diagonal; no need to recompute
Jacobian just to go from steady to transient or vise versa.

7/25/04 Cantera Workshop

Algorithm comparison to TWOPNT

 The numerical method used is similar to hybrid Newton/time-
stepping schemes used by others. In particular, it draws on
the report by Grcar (Sandia Report SAND91-8230, 1992)

 Differences:
 Works for arbitrary multi-domain problems
 Jacobian not recomputed when switching between transient and

steady-state modes (only diagonal terms modified)
 RMS weighted error norm used, rather than max value norm
 Grid points can be automatically removed as well as added
 Greater control over number of time steps between steady-state

Newton solution attempts

The AxisymmetricFlow Domain
Type

Python / MATLAB: class
AxisymmetricFlow

C++: class AxiStagnFlow

7/25/04 Cantera Workshop

Axisymmetric flow geometry and variables

 u = axial velocity
 v = radial velocity
 T = temperature
 Yk = mass fraction of species k

 Boundary conditions at z = 0
and z = L:
 u, T, Yk independent of r
 v linear in r (usually zero)

 Low Mach number: P nearly
constant

7/25/04 Cantera Workshop

Similarity Solution

 Consider the limits
 L/D << 1
 Ma << 1

 If these limits are satisfied, and if the boundary conditions
are satisfied, then the exact flow equations admit a solution
with the properties:
 u = u(z)
 v = rV(z)
 T = T(z)
 Yk = Yk(z)
 P = P0 + Λr2/2.

 Here Λ is a constant that must be determined as part of the
solution.

7/25/04 Cantera Workshop

For conditions where similarity solution holds, flow
equations reduce to ODEs in axial coordinate z

7/25/04 Cantera Workshop

Upwind differencing for convective terms

if u j > 0 :

df

dz

!
"#

$
%&
j

=
f j ' f j'1

z j ' z j'1

otherwise:

df

dz

!
"#

$
%&
j

=
f j+1

' f j

z j+1
' z j

7/25/04 Cantera Workshop

Central differencing for diffusive terms

7/25/04 Cantera Workshop

Axial velocity information flow

(!u)
j+1

" (!u)
j

#z
j+1/2

+ (!V)
j
+ (!V)

j+1
= 0

j j+1j-1

Continuity eq. propagates
information right-to-left

ρu specified on right
by right boundary object

burner-stabilized flame: zero gradient
counterflow flame: specified value
stagnation-point flame: zero

7/25/04 Cantera Workshop

Lambda Equation

!
j
= !

j"1

j j+1j-1

Lambda eq. propagates
information left-to-right

Λ specified on left
by left boundary object

(!u)

0
= !mleft

If mass flow rate from left is specified, then residual
equation for Λ at left is

Flame Simulations in Python

7/25/04 Cantera Workshop

Domain Class Hierarchy

Domain classes

Inlet Outlet Surface SymmPlane

Bdry1D

base class for boundary domains

AxisymmetricFlow

axisymmetric flow domains

Domain1D

base class for domains

7/25/04 Cantera Workshop

Stack Class Hierarchy

BurnerFlame

burner-stabilized flames

CounterFlame

non-premixed counterflow flames

StagnationFlow

Stagnation flows with surface chemistry

Stack

base class for Stacks

7/25/04 Cantera Workshop

Boundary Class Properties

 Inlet:
 specified T, V, Yk
 mass flux specified via Λ (left inlet) or directly (right inlet)g

 Outlet
 zero for V and Λ
 zero gradient for u, T, Yk

 Symm1D
 zero u,
 zero gradient for everything else

7/25/04 Cantera Workshop

Surface Boundary Class

 Surface species coverages

 Coupling to gas
 Specified T, u = 0*, V = 0
 Species:

 *to be modified to handle the case of net mass deposition or
etching

jk + !skWk = 0

!s
j
= 0

7/25/04 Cantera Workshop

Flame Simulations in Python: a Burner-
Stabilized Flame
#
FLAME1 - A burner-stabilized flat flame
#
This script simulates a burner-stablized lean
hydrogen-oxygen flame at low pressure.
#
from Cantera import *
from Cantera.OneD import *

##
#
parameter values
#
p = 0.05*OneAtm # pressure
tburner = 373.0 # burner temperature
mdot = 0.06 # kg/m^2/s

rxnmech = 'h2o2.cti' # reaction mechanism file
mix = 'ohmech' # gas mixture model
comp = 'H2:1.8, O2:1, AR:7' # premixed gas composition

flame1.py

7/25/04 Cantera Workshop

flame1.py

The solution domain is chosen to be 50 cm, and a point very near the
downstream boundary is added to help with the zero-gradient boundary
condition at this boundary.
initial_grid = [0.0, 0.02, 0.04, 0.06, 0.08, 0.1,
 0.15, 0.2, 0.4, 0.49, 0.5] # m

tol_ss = [1.0e-5, 1.0e-13] # [rtol atol] for steady-state
 # problem
tol_ts = [1.0e-4, 1.0e-9] # [rtol atol] for time stepping

loglevel = 1 # amount of diagnostic output (0
 # to 5)

refine_grid = 1 # 1 to enable refinement, 0 to
 # disable

7/25/04 Cantera Workshop

flame1.py

################ create the gas object ########################
#
This object will be used to evaluate all thermodynamic, kinetic,
and transport properties
#
gas = IdealGasMix(rxnmech, mix)

set its state to that of the unburned gas at the burner
gas.set(T = tburner, P = p, X = comp)

f = BurnerFlame(gas = gas, grid = initial_grid)

set the properties at the burner
f.burner.set(massflux = mdot, mole_fractions = comp,
 temperature = tburner)

7/25/04 Cantera Workshop

flame1.py

f.set(tol = tol_ss, tol_time = tol_ts)
f.setMaxJacAge(5, 10)
f.set(energy = 'off')
f.init()
f.showSolution()

f.solve(loglevel, refine_grid)

f.setRefineCriteria(ratio = 200.0, slope = 0.05, curve = 0.1)
f.set(energy = 'on')
f.solve(loglevel,refine_grid)

f.save('flame1.xml')
f.showSolution()

7/25/04 Cantera Workshop

flame1.py
 write the velocity, temperature, and mole fractions to a CSV file
z = f.flame.grid()
T = f.T()
u = f.u()
V = f.V()
fcsv = open('flame1.csv','w')
writeCSV(fcsv, ['z (m)', 'u (m/s)', 'V (1/s)', 'T (K)', 'rho (kg/m3)']
 + list(gas.speciesNames()))
for n in range(f.flame.nPoints()):
 f.setGasState(n)
 writeCSV(fcsv, [z[n], u[n], V[n], T[n], gas.density()]
 +list(gas.moleFractions()))
fcsv.close()

print 'solution saved to flame1.csv'

f.showStats()

7/25/04 Cantera Workshop

Where to find files in the source distribution

 C++
 Directory Cantera/src/oneD

 Python
 Modules in directory Cantera/python/Cantera/OneD
 Module onedim.py in this directory contains domain and stack classes
 Extension module source file ctonedim_methods.cpp in directory Cantera/python/src

 MATLAB
 m-files in in directory Cantera/matlab/cantera/1D
 class Domain1D in Cantera/matlab/cantera/1D/@Domain1D
 class Stack in Cantera/matlab/cantera/1D/@Stack
 MEX source file Cantera/matlab/cantera/private/onedimmethods.cpp

 clib
 File Cantera/clib/src/ctonedim.cpp

