
Using Cantera from Fortran 77
Release 1.4

David G. Goodwin

April 23, 2003

California Institute of Technology
Email: dgoodwin@caltech.edu

1 Introduction

More than 20 years after its introduction in 1980, Fortran 77 remains widely used for scientific computing, even though
the official Fortran standard is now Fortran 90/95. This is due to several factors, including the existence of a large body
of Fortran 77 software, the efficiency of mature Fortran 77 compilers for numerical calculations, and the large number
of scientists and engineers who are fluent in Fortran 77.

Many reacting flow codes are written in Fortran 77, so the question naturally arises whether Cantera can be used from
Fortran 77. The answer is of course “yes,” and in this document we’ll describe how to do it.

If you have a Fortran 77 application program, or are planning to write one, there are many reasons why you might want
to use Cantera from your program. Perhaps your program integrates equations that contain thermodynamic property
coefficients or chemical source terms; if so, you can use Cantera to evaluate them. Perhaps you need to know the
adiabatic flame temperature of a gas mixture; Cantera can be used to find it. Or perhaps you want to visualize reaction
pathways at various points in a flowfield; Cantera can help with this too.

Of course, since Cantera is written in C++ and usesobjectsto represent high-level abstractions like gas mixtures, rate
coefficients, reaction path diagrams, etc., you can’tdirectly invoke Cantera from Fortran 77. Fortran 77 has concept
of objects, nor does it know anything about C++. To get a Fortran 77 program to communicate with Cantera requires
a “go-between” interface procedure — one that appears to your Fortran code to be just another Fortran subroutine or
function, but that internally invokes Cantera in C++ to carry out the desired calculation.

We’ll look at how to write such interface procedures by examining a complete, working example of a Fortran 77
program that uses Cantera. The files required to build and run this example (a Fortran 77 main program, a set of
Fortran-callable interface procedures in C++, and a Makefile) are included in the Cantera installation, so you can build
and run this example yourself. You can also use this example as a starting point to write a Makefile and the interface
procedures for your application.

2 Program demo — an Example f77/Cantera Application

Programdemo is designed to illustrate how to interface a Fortran 77 program to Cantera. To build it, copy the
three files in ‘/usr/local/cantera/templates/f77’ to a directory where you have write access. (If you installed Cantera
somewhere other than ‘/usr/local’, then substitute the installation directory for ‘/usr/local’ here and below.)

A slightly condensed version of ‘demo.f’ is shown below.

program demo

implicit double precision (a-h,o-z)
parameter (MAXSP = 20, MAXRXNS = 100)
double precision q(MAXRXNS), qf(MAXRXNS), qr(MAXRXNS)
double precision x(MAXSP), y(MAXSP), wdot(MAXSP)
character *80 eq

c
write (*,*) ’**** Fortran 77 Test Program ****’

c
c---create the gas mixture

call newIdealGasMix(’h2o2.xml’,’’)
c
c---set its initial state

t = 1200.0
p = 101325.0
call setState_TPX_String(t, p,

* ’H2:2, O2:1, OH:0.01, H:0.01, O:0.01’)
c
c---set it to equilibrium at constant h and P

call equilibrate(’HP’)
c
c---write some thermodynamic properties

write (*,10) temperature(), pressure(), density(),
* enthalpy_mole(), entropy_mole(), cp_mole()

10 format (//’Temperature: ’,g14.5,’ K’/
* ’Pressure: ’,g14.5,’ Pa’/
* ’Density: ’,g14.5,’ kg/m3’/
* ’Molar Enthalpy:’,g14.5,’ J/kmol’/
* ’Molar Entropy: ’,g14.5,’ J/kmol-K’/
* ’Molar cp: ’,g14.5,’ J/kmol-K’//)

c
c---Reaction information

irxns = nReactions()
call getFwdRatesOfProgress(qf)
call getRevRatesOfProgress(qr)
call getNetRatesOfProgress(q)
do i = 1,irxns

call getReactionEqn(i,eq)
write (*,20) eq,qf(i),qr(i),q(i)

20 format (a20,3g14.5,’ kmol/m3/s’)
end do
stop
end

The program is standard Fortran 77, except that the procedure names are longer than 8 characters. Most Fortran 77
compilers now allow long names, but if yours doesn’t or you simply prefer short names, all you have to do is edit
‘demo_ftnlib.cpp’ and ‘demo.f’ to change the names.

To build thedemo application, type

make -f demo.mak

This will compile the two source filesdemo.f anddemo_ftnlib.cpp and link them to the Cantera libraries to
create the executable programdemo.

2 2 Program demo — an Example f77/Cantera Application

The Makefile requires a ’make’ utility that is compatible with GNU ’make.’ On some platforms (Solaris) this may be
installed as ’gmake.’

The output of this program is shown below.

**** Fortran 77 Test Program ****

Temperature: 3187.7 K
Pressure: 0.10133E+06 Pa
Density: 0.53652E-01 kg/m3
Molar Enthalpy: 0.34369E+08 J/kmol
Molar Entropy: 0.26632E+06 J/kmol-K
Molar cp: 44717. J/kmol-K

2 O + M <=> O2 + M 0.41979E-01 0.41979E-01 0.62450E-16 kmol/m3/s
O + H + M <=> OH + M 0.17494 0.17494 0.0000 kmol/m3/s
O + H2 <=> H + OH 5016.8 5016.8 0.14552E-10 kmol/m3/s
O + HO2 <=> OH + O2 0.70924 0.70924 -0.21094E-14 kmol/m3/s
O + H2O2 <=> OH + HO 0.10087 0.10087 -0.24980E-15 kmol/m3/s
H + 2 O2 <=> HO2 + O 0.19111E-01 0.19111E-01 -0.12490E-15 kmol/m3/s
H + O2 + H2O <=> HO2 4.2683 4.2683 0.10658E-13 kmol/m3/s
H + O2 + AR <=> HO2 0.0000 0.0000 0.0000 kmol/m3/s
H + O2 <=> O + OH 746.13 746.13 -0.45475E-11 kmol/m3/s
2 H + M <=> H2 + M 0.73995E-01 0.73995E-01 -0.12490E-15 kmol/m3/s
2 H + H2 <=> 2 H2 0.81805E-01 0.81805E-01 0.16653E-15 kmol/m3/s
2 H + H2O <=> H2 + H 0.84809 0.84809 0.16653E-14 kmol/m3/s
H + OH + M <=> H2O + 3.7171 3.7171 0.0000 kmol/m3/s
H + HO2 <=> O + H2O 0.28353 0.28353 0.0000 kmol/m3/s
H + HO2 <=> O2 + H2 3.0051 3.0051 0.23537E-13 kmol/m3/s
H + HO2 <=> 2 OH 6.0332 6.0332 -0.88818E-15 kmol/m3/s
H + H2O2 <=> HO2 + H 0.23480 0.23480 -0.22204E-15 kmol/m3/s
H + H2O2 <=> OH + H2 0.24584E-01 0.24584E-01 -0.52042E-16 kmol/m3/s
OH + H2 <=> H + H2O 7425.0 7425.0 -0.15461E-10 kmol/m3/s
2 OH (+ M) <=> H2O2 4.2464 4.2464 0.79936E-14 kmol/m3/s
2 OH <=> O + H2O 2876.7 2876.7 -0.13642E-11 kmol/m3/s
OH + HO2 <=> O2 + H2 1.3933 1.3933 0.73275E-14 kmol/m3/s
OH + H2O2 <=> HO2 + 0.90743E-02 0.90743E-02 0.57246E-16 kmol/m3/s
OH + H2O2 <=> HO2 + 79.432 79.432 0.49738E-12 kmol/m3/s
2 HO2 <=> O2 + H2O2 0.58786E-05 0.58786E-05 -0.84703E-21 kmol/m3/s
2 HO2 <=> O2 + H2O2 0.22081E-02 0.22081E-02 -0.43368E-18 kmol/m3/s
OH + HO2 <=> O2 + H2 28.781 28.781 0.14566E-12 kmol/m3/s

3 The Library demo_ftnlib

Although meant as a demonstration of writing an interface library rather than as an “official” Cantera Fortran 77
interface, in fact the ‘demo_ftnlib’ library contains many procedures that can be called to compute the properties of
reacting ideal gas mixtures. These procedures may be all that many applications need.

Listed below are the functions and subroutines implemented in this library. Note that the capitalization of the procedure
names is arbitrary, since Fortran is not case-sensitive. The capitalization used here is designed to promote readability,
and follows the same conventions as those used in Cantera itself.

3

3.1 Specifying the Gas Mixture

This library is designed to work with one gas mixture at a time. The first thing that should be done is to call
newIdealGasMix to read in the mixture attributes from an input file. Cantera supports two file formats for this
purpose: CTML, an XML-derived markup language that can be used to specify the properties of a general phase of
matter, and a format compatible with the Chemkin [?Kee et al., 1996] software package that is restricted to specifying
ideal gas mixtures.

subroutine newIdealGasMix(inputFile, thermoFile). Read a specification for a reacting ideal gas mixture (or “re-
action mechanism”) from a file in CTML format or Chemkin-compatible format. Note that if a Chemkin-
compatible file is used, an equivalent CTML file will also be written by this call. Both arguments are character
strings; the first is the name of the file containig the specification, and the second is the name of a thermodynamic
database file, which is only relevant ifinputFile is in Chemkin-compatible format. If a CTML file is specified,
the second argument should be an empty string.

This subroutine may be called multiple times. Each call removes the previously-loaded mixture model, and
replaces it with the new one. The state is set to the default for the new mixture.

Examples:

call newIdealGasMix(’chem.inp’,’therm.dat’)
call newIdealGasMix(’chem.xml’,’’)

3.2 Constant attributes

Some attributes are constants, independent of the state. These functions return a few of them.

integer function nElements(). Number of elements.

integer function nReactions(). Number of reactions.

integer function nSpecies().Number of species.

subroutine getReactionEqn(i, eqn). Returns the reaction equation string for reaction numberi in eqn. If string eqn
is not large enough to contain the entire reaction equation string, the equation returned will be truncated.

3.3 Setting the State

These subroutines set the thermodynamic state of the gas mixture. All property functions return values for the state
set by the last call to one of these subroutines.

subroutine setState_TPX(T, P, X). Set the state by specifying the temperature, pressure, and mole fractions. The
mole fractions are specified by an array, which must be at least as large asnSpecies() . The input mole
fraction values will be scaled to sum to 1.0.

Example:

double precision T, P, X(100)
...
call setState_TPX(T, P, X)

4 3 The Library demo_ftnlib

subroutine setState_TPX_String(T, P, X). Set the state by specifying the temperature, pressure, and mole fractions.
The mole fractions are specified by a string, which must have a format like that shown below. Unspecified
species are set to zero, and the rest are scaled to sum to 1.0.

call setState_TPX_String(T, P, ’CH4:1, O2:2, N2:7.52’)

subroutine setState_TRY(T, rho, Y). Set the state by specifying the temperature, density, and mass fractions. The
mass fractions are specified by an array, which must be at least as large asnSpecies() . The input mass
fraction values will be scaled to sum to 1.0.

3.4 Chemical Equilibrium

subroutine equilibrate(XY). Set the state to a state of chemical equilibrium, holding two properties fixed at their
values in the current state. The argumentXY is a two-character string that specifies the two thermodynamic
properties to be held fixed, and must be one of’TP’ , ’TV’ , ’HP’ , ’UV’ , ’SV’ , or ’SP’ .

Example:

call setState_TPX_String(temp, pres, ’CH4:1, O2:2, N2:7.52’)
call equilibrate(’HP’) ! find adiabatic flame temp.
Tad = temperature()

3.5 Properties of the Current State

These functions all return properties of the current state, which is the state sset by the last call to one of thesetState
subroutines. As always in Cantera, the procedures return values in SI units (kmol, kg, s, m, K).

double precision function temperature(). The temperature [K].

double precision function pressure().The pressure [Pa].

double precision function density(). The density [kg/m3].

double precision function meanMolarMass().The mean molar mass [kg/kmol].

double precision function enthalpy_mole().The molar enthalpy [J/kmol].

double precision function entropy_mole().The molar entropy [J/kmol/K].

double precision function intEnergy_mole(). The molar internal energy [J/kmol].

double precision function cp_mole().The molar heat capacity at constant pressure [J/kmol/K].

double precision function gibbs_mole().The specific Gibbs function [J/kg].

double precision function enthalpy_mass().The specific enthalpy [J/kg].

double precision function entropy_mass().The specific entropy [J/kg/K].

double precision function intEnergy_mass().The specific internal energy [J/kg].

double precision function cp_mass().The specific heat at constant pressure [J/kg/K].

double precision function gibbs_mass().The specific Gibbs function [J/kg].

subroutine getFwdRatesOfProgress(qfwd). Returns the reaction forward rates of progress [kmol/m3/s] in array
qfwd, which must be at least as large asnReactions() .

3.4 Chemical Equilibrium 5

subroutine getRevRatesOfProgress(qrev). Returns the reaction reverse rates of progress [kmol/m3/s] in arrayqrev,
which must be at least as large asnReactions() .

subroutine getNetRatesOfProgress(qnet). Returns the reaction net rates of progress [kmol/m3/s] in array qnet,
which must be at least as large asnReactions() .

subroutine getNetProductionRates(wdot). Returns the species net production rates [kmol/m3/s] in array wdot,
which must be at least as large asnSpecies() .

subroutine getCreationRates(cdot). Returns the species creation rates [kmol/m3/s] in arraycdot, which must be at
least as large asnSpecies() .

subroutine getDestructionRates(ddot). Returns the species destruction rates [kmol/m3/s] in arrayddot, which must
be at least as large asnSpecies() .

4 Building your Application

Now that you have built thedemo application and verified that it works, you are ready to write your own Fortran 77
application program and build it in the same way. Let’s take the simplest case first. Suppose that the procedures in the
demo_ftnlib library are all you require for your application. In this case, all that is really required is to edit the
Makefile to specify your program file(s), instead of ‘demo.f’.

First, copy file ‘demo.mak’ to ‘ Makefile’, so that you can simply typemake to build your application. Now edit
‘Makefile’ to specify your program files and any other libraries your application may require. You can also change
other parameters, if you like.

For example, if your application program is calledreact , and consists of program files ‘react.f’, ‘ sub1.f’, and ‘sub2.f’,
and uses additional procedures from external librarieslinpack andblas , then the first few lines of ‘Makefile’ would
look like this:

the name of the executable program to be created
PROG_NAME = react

the object files to be linked together.
OBJS = react.o sub1.o sub2.o demo_ftnlib.o

additional flags to be passed to the linker. If your program
requires other external libraries, put them here
LINK_OPTIONS = -llinpack -lblas

After editing the Makefile, typingmake at the command prompt should now build your application and link it to
Cantera.

Note that ‘demo.mak’ was created when Cantera was first configured for your system, and so contains system-specific
information. For example, it specifies the directory where Cantera libraries may be found. It also specifies some
libraries required by Fortran that must be added explicitly to the link command, since the C++ compiler is used for
the linking step. (The Fortran compiler knows it needs these libraries; the C++ compiler doesn’t. On the other hand,
C++ also uses additional libraries that Fortran does not know about.) If you build your program on another computer
system, it may be easiest to get the version of ‘demo.mak’ on that system and modify it as you did on your system.

5 Inside demo_ftnlib

If the example library ‘demo_ftnlib’ does not have interface functions for some features of Cantera, you can modify
the file to add new procedures, or write an entirely new file. To do so requires a bit of C++ programming. However,

6 5 Inside demo_ftnlib

since these functions don’tdo anything other than act as the “glue” between your Fortran application and the Cantera
kernel, they are easy to write. Many have bodies of only one line.

Let’s look at file ‘demo_ftnlib.cpp’ to see how it works. Here is a condensed version, showing only a few of the
function definitions.

#include "IdealGasMix.h"
#include "equilibrium.h"

static IdealGasMix* _gas = 0;

extern "C" {

// This is the Fortran main program
extern int MAIN__();

void newidealgasmix_(char * file, char * thermo,
ftnlen lenfile, ftnlen lenthermo) {
string fin = string(file, lenfile);
string fth = string(thermo, lenthermo);
if (_gas) delete _gas;
_gas = new IdealGasMix(fin, fth);
_init();

}

integer nelements_() { return _gas->nElements(); }
...

doublereal enthalpy_mass_() {
return _gas->enthalpy_mole();

}
...

void getnetratesofprogress_(doublereal* q) {
_gas->getNetRatesOfProgress(q);

}
...

// This C++ main program simply calls the Fortran main program.
int main() {

try {
return MAIN__();

}
catch (CanteraError) {

showErrors(cerr);
return -1;

}
catch (...) {

cout << "An exception was trapped. Program terminating." << endl;
return -1;

}
}

}

7

5.1 Cantera Header Files

At the top of the file, Cantera header files are included. Since this library is designed to provide functions to compute
properties of ideal gas mixtures, Cantera C++ classIdealGasMix will be used. Also, a chemical equilibrium
function will be implemented, which will call the functionequilibrate declared in header file ‘equilibrium.h’.

#include "IdealGasMix.h"
#include "equilibrium.h"

5.2 Storing a Pointer

An object of classIdealGasMix will be used to define the state and compute the properties. This object needs to
be stored somewhere; the approach taken here is to use a global pointer variable that points to a dynamically-created
object.

static IdealGasMix* _gas = 0;

This statement creates a pointer in global storage that can point to anIdealGasMix object. Initially, however, it
doesn’t point to anything – it is initialized to zero (NULL). It is important to initialize the pointer, since otherwise on
the first call to functionnewIdealGasMix , it would attempt to delete an object at the location where_gas happens
to point, even though none is there. This would almost certainly generate a segentation fault, and cause your program
to crash.

Of course, multiple pointers could be stored, if it were desired to access more than one Cantera object.

5.3 extern "C"

C++ normally modifies the names of procedures when it writes them to the object file (“name mangling”) by encoding
the argument types in the name. This allows a C++ program to define multiple functions that have the same name, as
long as the arguments differ in number or type. There is no ambiguity, since the names in the object file are different.

Unfortunately, C, Fortran, and most other applications know nothing about C++ name mangling, and can’t deduce
what “mangled” name the should look for in the object file. Name mangling can be turned off, however, so that C++
can generate code that has the same external interface as C. Therefore, any procedure that is meant to be callable from
Fortran or C must be eclosed in anextern C̈¨ block:

extern "C" {
void sub1_(double * x, double * y) { ... };
double func1_(int * n, double * x) { ... };

}

5.4 Procedure Names

If you look at the definition of any of the procedures in ‘demo_ftnlib.cpp’, you will notice two things about the names:
they are all lowercase, and they have a trailing underscore appended. They are defined this way because this is how
most Fortran compilers write procedure names to the object file.

Unlike C, which writes names to the object file exactly as they appear in the source file, Fortran compilers modify
the names. Many popular unix Fortran compilers (GNU g77, Solaris, DEC) translate names as shown here – they are
converted to lower case, and a trailing underscore is appended. Other Fortran compilers (AIX, HP, Compaq Visual
Fortran) have a different default behavior, but can optionally translate names in this way if certain flags are set.

8 5 Inside demo_ftnlib

5.5 Procedure Arguments

C and Fortran pass arguments to procedures differently. C passes most variables by value (except arrays and structures),
while Fortran always passes variables by reference. As a result, the C equivalent of the Fortran procedure

SUBROUTINE SUB2(X, Y, ARRAY1)
DOUBLE PRECISION X, Y, ARRAY1(*)

is

void sub2_(double * x, double * y, double * array1);

Passing strings is done differently in Fortran and C. In C, strings are NULL-terminated (the last character is’\0’ .)
This character acts as a sentinel denoting the end of the string. Fortran strings are not null-terminated, and therefore
an additional length parameter must be passed to a procedure taking a string argument, so that it knows how many
characters should be read from memory. This parameter is passed after all other parameters have been specified; if
multiple strings are passed, the length parameter for each one is appended to the end of the argument list, in order.

5.6 The Procedure Body

Most of the procedures in this library have very simple bodies; many are only one line. For the most part, they simply
invoke an appropriate method of classIdealGasMix on the object pointed to by the pointer_gas .

5.7 The main Procedure

To use this library, it must of course be compiled with a C++ compiler, and then be linked to your program, which is
compiled with a Fortran 77 compiler. The link step must also be done using the C++ compiler, so that C++-specific
initializations are done.

During linking, the C++ compiler will look for a procedure namedmain as the entry point. (The Fortran compiler, on
the other hand, uses the nameMAIN__ for the main program.) Since the Fortran application does not contain a routine
namedmain , the library provides one. It simply calls the Fortran entry pointMAIN__ within a try...catch block
to handle exceptions.

6 Adding New Procedures

xxx

6.1 Data Types

As shown here, it is assumed that Fortran typeDOUBLE PRECISIONcorresponds todouble in C, INTEGER
corresponds toint , and the hidden string length parameters also have typeint . While this is the case for most 32-bit
systems, it may not always be true. To account for this, Cantera defines three preprocessor symbols that resolve to
the appropriate C type, as shown below. The names of these symbols are the same as used by thef2c Fortran-to-C
translator. (If in doubt about what the correct values should be, runf2c and see how it translates a small test Fortran
program.)

These symbols are defined in Cantera header file ‘kernel/ct_defs.h’, which is included by virtually every other Cantera
header file. Therefore, they can be used in your interface library to provide a degree of portability to other architectures.

5.5 Procedure Arguments 9

Symbol Fortran Type Default Value
doublereal DOUBLE PRECISION double
integer INTEGER int
ftnlen (hidden) int

7 Summary

xxx

References

R. J. Kee, F. M. Rupley, E. Meeks, and J. A. Miller. Chemkin-III: A Fortran chemical kinetics package for the analysis
of gas-phase chemical and plasma kinetics. Technical Report SAND96-8216, Sandia National Laboratories, 1996.

10 References

	Introduction
	Program ` ```demo --- an Example f77/Cantera Application
	The Library ` ```demo_ftnlib
	Specifying the Gas Mixture
	Constant attributes
	Setting the State
	Chemical Equilibrium
	Properties of the Current State

	Building your Application
	Inside ` ```demo_ftnlib
	Cantera Header Files
	Storing a Pointer
	` ```extern "C"
	Procedure Names
	Procedure Arguments
	The Procedure Body
	The main Procedure

	Adding New Procedures
	Summary

