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1 Introduction

Cantera contains built-in accurate equations of state for several pure fluids, including water, nitrogen, oxygen, methane,
and hydrogen. These equations of state may be used to calculate accurate thermodynamic properties for these fluids
over the full range in density and temperature for which the equations of state are valid, including pure liquid, pure
vapor, saturated liquid/vapor, and supercritical regions in the phase diagram. And because Cantera integrates with
popular general-purpose problem-solving environments like MATLAB and Python, it is possible not only to compute
fluid properties but to construct complete simulations of any process involving these fluids, such as vapor power cycles.

In this document, we will look at how to use these capabilities provided by Cantera in MATLAB. The differences
in syntax between MATLAB and Python will be described in Appendix A. It will be assumed here that you have
MATLAB on your system, and have installed the Cantera MATLAB Toolbox. For instructions on how to do this, see
Appendix B.

2 Fluid Objects

The first step is to create anobject in MATLAB representing the fluid of interest. Here’s how to create an object
representing water:

>> h2o = Water

temperature 300 K
pressure 101325 Pa
density 996.633 kg/m^3
mean mol. weight 18.016 amu

X Y
------------- ------------

H2O 1.000000e+00 1.000000e+00

>>

After executing this statement, MATLAB variableh2o is an object representing water. A summary of the initial state
of the object is printed when it is created; to suppress this, follow the statement with a semicolon:

>> h2o = Water;

The right-hand-side of this statement invokes a functionWater in the Cantera MATLAB Toolbox that returns a
new object representing water. It takes no arguments, which is why the parentheses may be omitted (i.e.Water is
equivalent toWater() in MATLAB). This function may be called multiple times if it is desired to construct multiple
objects, each representing water:

>> state1 = Water;
>> state2 = Water;
>> state3 = Water;

These three objects are all independent, and may each be set to a different state.

Objects representing the other fluids may be created by calling the appropriate function:

>> n2 = Nitrogen;
>> o2 = Oxygen;
>> h2 = Hydrogen;
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>> ch4 = Methane;

As with theWater function, the functions take no arguments, and they may be called as many times as desired, to
create multiple independent fluid objects of the same type.

3 Setting the State

After an object representing the fluid has been created, the next step is to set its state. These objects are designed to
behave like the fluids they represent, so the state is set in the same way the thermodynamic state of a pure, single-
component fluid is set — by specifying the values of two independent thermodynamic properties.

Various combinations of properties may be used to set the state. For conditions for which only a single phase is present,
the temperature and pressure may be independently specified. However, for saturated states in which liquid and vapor
are both present, the pressure is a functionPsat(T ) of temperature, and is therefore not independent. Temperature and
specific volume (or density) are always independent, and can be therefore be used to specify the state uniquely whether
one phase is present, or two are. For saturation states only, the vapor fraction may also be used as an independent
property to use in specifying the state.

Theset method is used to set the state of a fluid object. Here’s an example of how it is used:

>> set (h2o,’T’,400,’Rho’,0.01);

The object whose properties are to be set is always the first argument, followed by two string/value pairs that specify
which property is to be set, and the value to which it should be set.

The properties may either be specified by full name, or by a symbol or abbreviation. Theset statement above could
also be written in any of these forms:

>> set (h2o,’Temperature’,400,’Rho’,0.01);
>> set (h2o,’Temperature’,400,’Density’,0.01);
>> set (h2o,’T’,400,’Density’,0.01);

The names and abbreviations that are recognized are listed below.

Property Full Name Abbreviation Units
Temperature Temperature T K
Mass Density Density Rho kg/m3

Specific Volume Volume V m3/kg
Pressure Pressure P Pa
Specific Enthalpy Enthalpy H J/kg
Specific Entropy Entropy S J/kg/K
Vapor Fraction Vapor -
Liquid Fraction Liquid -

Note that it is possible to set the state using properties other than just the temperature, density, and pressure. For
example, the pressure and the specific entropy may be used to set the state. This makes it very easy to find the state
resulting from an isentropic compression or expansion. For example, suppose we need to know the temperature that
results if nitrogen initially at 300 K and 1 atm pressure is isentropically compressed to two atmospheres; all we need
to do to solve this problem is show below.

>> set (n2,’T’,300,’P’,OneAtm);
>> s0 = entropy_mass(n2);
>> set (n2,’P’,2.0*OneAtm,’S’,s0);
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>> temperature(n2)

ans =

365.6988

Note that for the extensive properties (V, H, U, S), the values must be givenper unit mass– that is, it is thespecific
value, not the molar or total value, that must be specified.

Also, not all property pairs are implemented. ’H’ can only be set in combination with ’P’, ’U’ can only be set in
combination with ’V’ or ’Rho’, and ’S’ must be set in conjunction with ’P’, ’V’, or ’Rho’.

Saturation states may be set by specifyingT or P and the liquid or vapor fraction. Specifying a vapor fractionx is
precisely equivalent to specifying a liquid fraction1 − x. Attempting to specify a saturated state withT > Tc or
P > Pc will result in an error.

Examples:

set (h2o,’Temperature’,600.0);
set (h2o,’T’,600.0);
set (h2o,’H’,0.5*enthalpy_mass(h2o),’P’,pressure(h2o));
set (h2o,’S’,entropy_mass(h2o),’P’,0.5*pressure(h2o));
set (h2o,’T’,500.0,’Vapor’,0.8);
set (h2o,’T’,500.0,’Liquid’,0.2);
set (h2o,’P’,0.5*critPressure(h2o),’Liquid’,0.2);

4 Units

Cantera always uses SI units, with quantity expressed in kmol. The units of some common quantities are listed in the
table below.

Property Symbol Units
Temperature T K
Pressure P Pa
Density ρ kg/m3

Specific Volume v m3/kg
Specific Enthalpy h J/kg
Specific Entropy s J/kg-K
Specific Heat cp or cv J/kg-K
Molar Volume v̂ m3/kmol
Molar Enthalpy ĥ J/kmol
Molar Entropy ŝ J/kmol-K
Molar Heat Capacity ĉp or ĉv J/kmol-K

5 Critical State Properties

The critical temperature, pressure, and density may be evaluated using the methodscritTemperature ,
critPressure , andcritDensity , respectively.

>> tcrit = critTemperature(h2o)

tcrit =
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647.2860

>> pcrit = critPressure(h2o)

pcrit =

22089000

>> rhocrit = critDensity(h2o)

rhocrit =

317

6 Saturation Properties

6.1 The Saturation Pressure

The saturation pressurePsat(T ) is the pressure at which liquid and vapor may co-exist in equilibrium at temperature
T . MethodsatPressure returns the saturation pressure for a specified temperature.

>> satPressure(h2o,300)

ans =

3.5282e+03

The temperature must be less thanTc.

6.2 The Saturation Temperature

It is also possible to compute the saturation temperature given a pressureP < Pc:

>> satTemperature(h2o,oneatm)

ans =

373.1772

6.3 Vapor Fraction

Saturated states have both liquid and vapor present. The fraction of vapor is returned by methodvaporFraction .

>> set (h2o,’T’,critTemperature(h2o),’P’,critPressure(h2o))

temperature 647.286 K
pressure 2.2089e+07 Pa
density 307.021 kg/m^3
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mean mol. weight 18.016 amu

X Y
------------- ------------

H2O 1.000000e+00 1.000000e+00

>> set (h2o,’T’,600,’Rho’,density(h2o))

temperature 600 K
pressure 1.23294e+07 Pa
density 307.021 kg/m^3
mean mol. weight 18.016 amu

X Y
------------- ------------

H2O 1.000000e+00 1.000000e+00

>> vaporFraction(h2o)

ans =

0.1406

7 Property Relationships

The properties are computed from self-consistent thermodynamic equations of state, not from approximate correla-
tions. The equations of state are taken largely fromReynolds[1979], which is in turn a compilation of data from other
sources (e.g.Jacobsen et al.[1972]).

All relationships among properties and their derivatives (the Clapeyron Equation, the Maxwell Relations, etc.) should
be satisfied to good accuracy by the numerical values Cantera returns. Saturation states have equal values of the Gibbs
function in the liquid and vapor states to high accuracy.

The script shown below tests the extent to which the results satisfy the Clapeyron Equation

dPsat

dT
=

sg − sf

vg − vf
(1)

function rel_error = test_clapeyron(sub, T)

dt = 0.01;
psat1 = satPressure(sub, T);
psat2 = satPressure(sub, T + dt);
dPsatdT = (psat2 - psat1)/dt;

set (sub, ’T’, T, ’Liquid’, 1.0);
sf = entropy_mass(sub);
vf = 1.0/density(sub);

set (sub, ’T’, T, ’Vapor’, 1.0);
sg = entropy_mass(sub);
vg = 1.0/density(sub);
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delta_s_over_delta_v = (sg - sf)/(vg - vf);
rel_error = ((delta_s_over_delta_v/dPsatdT) - 1.0);

>> ch4 = Methane;
>> rel_error = test_clapeyron(ch4, 180)

rel_error =

-1.2553e-04

>> o2 = Oxygen;
>> rel_error = test_clapeyron(o2, 120)

rel_error =

-2.0924e-04

8 Reference

The methods that can be used with objects representing pure fluids are listed below. These methods also may be
used for objects representing multicomponent chemical solutions (not described in this document). Some of them
return arrays of properties for the species in the solution; for pure fluids, there is only one species. The units for these
properties are (kmol, m, s, K).

% atomic masses of the elements
atomicMasses(fluid)

% chemical potential of the ( one ) species
chemPotentials(fluid)

% specific heat at constant pressure
cp_mass(fluid)

% molar heat capacity at constant pressure
cp_mole(fluid)

% critical density
critDensity(fluid)

% critical pressure
critPressure(fluid)

% critical temperature
critTemperature(fluid)

% specific heat at constant volume
cv_mass(fluid)

% molar heat capacity at constant volume
cv_mole(fluid)
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% mass density
density(fluid)

% index of element with name ’ name’
elementIndex(fluid,name)

% name of element with integer index ’ index ’
elementName(fluid,index)

% specific enthalpy
enthalpy_mass(fluid)

% molar enthalpy
enthalpy_mole(fluid)

% specific entropy
entropy_mass(fluid)

% molar entropy
entropy_mole(fluid)

% specific Gibbs function
gibbs_mass(fluid)

% molar Gibbs function
gibbs_mole(fluid)

% specific internal energy
intEnergy_mass(fluid)

% molar internal energy
intEnergy_mole(fluid)

% maximum temperature for which equation of state is valid
maxTemp(fluid)

% molar mass
meanMolarMass(fluid)

% molecular weight ( molar mass)
meanMolecularWeight(fluid)

% minimum temperature for which equation of state is valid
minTemp(fluid)

% molar density
molarDensity(fluid)

% number of atoms of an element in the ( one ) species
nAtoms(s,species,element)

% number of elements
nElements(fluid)
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% pressure
pressure(fluid)

% standard - state pressure
refPressure(fluid)

% saturation pressure at temperature T
satPressure(fluid, T)

% saturation temperature at pressure P
satTemperature(fluid, P)

% set the thermodynamic state
set (fluid,prop1, value1, prop2, value2)

% speed of sound
soundspeed(fluid)

% temperature
temperature(fluid)

% vapor fraction
vaporFraction(fluid)

9 Examples

9.1 PVT Surfaces

A MATLAB script to generate the surfaceP (v, T ) for a supplied fluid object is shown below, and a surface plot
generated from the data produced by this function for water is shown in Fig.1.

function [logv t logp] = pvt(sub)
%
% PVT - pressure / volume / temperature data for substance ’ sub ’
% This function returns two one- dimensional arrays
% containing log10 ( v) and T, respectively , and a 2D
% array containing log10 [ p( v, T)].
%
tmin = minTemp(sub) + 0.01;
tmax = maxTemp(sub) - 0.01;

set (sub, ’T’,tmin,’Liquid’,1.0);
vmin = 0.5/density(sub);
set (sub, ’T’,tmin,’Vapor’,1.0);
vmax = 10.0/density(sub);

nt = 100;
dt = (tmax - tmin)/nt;
nv = 100;
dlogv = log10 (vmax/vmin)/nv;
logvmin = log10 (vmin);
v = zeros (nv,1);
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Figure 1: P-V-T surface for water.

t = zeros (nt,1);
p = zeros (nt,nv);
for n = 1:nv

logv(n) = logvmin + (n-1)*dlogv;
v = 10.0^logv(n);
for m = 1:nt

t(m) = tmin + (m-1)*dt;
set (sub, ’T’, t(m), ’V’, v);
logp(m,n) = log10 (pressure(sub));

end
end

9.2 A Rankine Cycle

A MATLAB function to simulate a simple Rankine cycle is shown below. The function arguments are:

1. T1. The temperature at the inlet to the pump.

2. P2. The pressure at the outlet of the pump, which is taken to be constant to the turbine inlet.
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3. The isentropic efficiency of the pump.

4. The isentropic efficiency of the turbine.

function [work, efficiency] = rankine(t1, p2, eta_pump, ...
eta_turbine)

% create an object representing water
w = Water;

% start with saturated liquid water at t1
set (w,’T’,t1,’Liquid’,1.0);

% pump it to p2
pump_work = pump(w, p2, eta_pump);
h2 = enthalpy_mass(w);

% heat to saturated vapor
set (w,’P’,p2,’Vapor’,1.0);
h3 = enthalpy_mass(w);

heat_added = h3 - h2;

% expand adiabatically back to the initial pressure
turbine_work = expand(w, p1, eta_turbine);
work = turbine_work - pump_work;

% compute the efficiency
efficiency = (work - pump_work)/heat_added;

function w = pump(fluid, pfinal, eta)
% PUMP- Adiabatically pump a fluid to pressure pfinal , using a pump
% with isentropic efficiency eta .
%
h0 = enthalpy_mass(fluid);
s0 = entropy_mass(fluid);
set (fluid, ’S’, s0, ’P’, pfinal);
h1s = enthalpy_mass(fluid);
isentropic_work = h1s - h0;
actual_work = isentropic_work / eta;
h1 = h0 + actual_work;
set (fluid, ’H’,h1, ’P’,pfinal);
w = actual_work;

function w = expand(fluid, pfinal, eta)
% EXPAND- Adiabatically expand a fluid to pressure pfinal , using a
% turbine with isentropic efficiency eta .
%
h0 = enthalpy_mass(fluid);
s0 = entropy_mass(fluid);
set (fluid, ’S’, s0, ’P’, pfinal);
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h1s = enthalpy_mass(fluid);
isentropic_work = h0 - h1s;
actual_work = isentropic_work * eta;
h1 = h0 - actual_work;
set (fluid, ’H’,h1, ’P’,pfinal);
w = actual_work;

A Using Python

Everything described here for MATLAB can be done in Python too. The syntax is a little different, since Python uses
the “dot” syntax to invoke methods on an object, rather than the function-like syntax used by MATLAB. That is, the
temperature method would be called by writing

T = fluid.temperature()

instead of

T = temperature(fluid)

Note that in Python, parentheses are required in function or method calls, even if there are no arguments.

Also the syntax of theset method is different:

fluid.set(T = 400.0, Rho = 0.01)

instead of

set(fluid, ’T’, 400.0, ’Rho’, 0.01)

Finally, the following two lines should be put at the top of the script:

from Cantera import *
from Cantera.liquidvapor import *

To get help on the methods that can be used on an object, do this:

>>> w = Water()
>>> help(w.__class__)

Alternatively, you can use thepydoc program to view documentation, which can be started from the command line
ot from the Start menu (Windows).

The Rankine cycle example is shown below in Python.

from Cantera import *
from Cantera.liquidvapor import Water

def pump(fluid, pfinal, eta):
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"""Adiabatically pump a fluid to pressure pfinal, using
a pump with isentropic efficiency eta."""
h0 = fluid.enthalpy_mass()
s0 = fluid.entropy_mass()
fluid.set(S = s0, P = pfinal)
h1s = fluid.enthalpy_mass()
isentropic_work = h1s - h0
actual_work = isentropic_work / eta
h1 = h0 + actual_work
fluid.set(H = h1, P = pfinal)
return actual_work

def expand(fluid, pfinal, eta):
"""Adiabatically expand a fluid to pressure pfinal, using
a turbine with isentropic efficiency eta."""
h0 = fluid.enthalpy_mass()
s0 = fluid.entropy_mass()
fluid.set(S = s0, P = pfinal)
h1s = fluid.enthalpy_mass()
isentropic_work = h0 - h1s
actual_work = isentropic_work * eta
h1 = h0 - actual_work
fluid.set(H = h1, P = pfinal)
return actual_work

def rankine(t1, p2, eta_pump, eta_turbine):
# create an object representing water
w = Water()

# start with saturated liquid water at t1
w.set(T = t1, Vapor = 0.0)
h1 = w.enthalpy_mass()

# pump it adiabatically to p2
pump_work = pump(w, p2, eta_pump)
h2 = w.enthalpy_mass()

# heat to saturated vapor
w.set(P = p2, Vapor = 1.0)
h3 = w.enthalpy_mass()
heat_added = h3 - h2

# expand back to p1
turbine_work = expand(w, p1, eta_turbine)

work = turbine_work - pump_work
# compute the efficiency
efficiency = (turbine_work - pump_work)/heat_added

return [work, efficiency]
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B Installing Cantera

Cantera can be downloaded fromhttp://sourceforge.net/projects/cantera . Select “Files” then se-
lect the appropriate installer for your machine type.

B.1 Installing on a PC running Windows XP or 2000

From the same sourceforge site, download file ‘cantera154-install.pdf’ in the “Cantera Documentation” package under
“building and installing.” Follow the instructions in this document to install Cantera and configure MATLAB to use
the Cantera Toolbox.

B.2 Installing on a linux workstation

To use Cantera under linux, download the unix/linux source distribution, unpack it, go into the top-level Cantera
directory, and type at a shell prompt:

./configure
make
make install

You may want to edit the ‘configure’ script before running it, to set various options. Further information is in the files
‘README’, ‘ INSTALLING’, and ‘configure’.

Note that you need to compile Cantera with a version ofg++ compatible with the compiler used to compile MATLAB
itself. For MATLAB 7, you will needg++ version 3.x, while for MATLAB 6, version 2.95 is required.

B.3 Installing on a Mac running OS 10.3

A binary installer is available for OS 10.3 from the Cantera sourceforge site. This contains those portions of Cantera
needed to access it from MATLAB and Python. Download the disk image ‘Cantera.dmg’, mount it, and run the
‘Cantera.pkg’ installer.

If you plan to use Cantera from C++ or Fortran, then you need to download the source distribution and build Cantera.
You may also need to build Cantera yourself if you are running MATLAB 6 (R13), instead of 7 (R14). Follow the
procedures described above for linux.

There are a few extra packages you may wish to install, in addition to those listed in SectionB.4.

Tcl/Tk Aqua. Get this if you want to run Tcl/Tk applications from Python. http://tcltkaqua.
sourceforge.net/ . Highly recommended.

MacPython Although Python comes with OS X, there are a few add-ons that are useful to have. These may
be installed by adding the MacPython package, available fromhttp://homepages.cwi.nl/~jack/
macpython/ . Select the link “MacPython 2.3 for Panther addons” to download the disk image.

If you have installed MacPython, start the PackageManager, located in /Applications/MacPython. You should install
at least the packages “readline,” “Numeric,” and “_tkinter.” You may want to install some of the others too.

B.4 Extras

There are a couple of extra packages you may want to install. Neither of these is required to use Cantera from
MATLAB, C++, or Fortran. If you plan to use Cantera from Python, the Numeric package is required. Graphviz is
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optional.

Graphviz. Useful for displaying reaction path diagrams generated by Cantera (e.g. from MixMaster). The main
download site ishttp://www.research.att.com/sw/tools/graphviz/download.html . Se-
lect the binary installer for your operating system.

Numeric. Adds fast MATLAB-like array operations to Python. For Windows or linux, go tohttp://
sourceforge.net/projects/numpy/ , and select the “numpy” file release (not “Numarray”). Get the
appropriate binary installer or source distribution. For Mac OS X, you can install Numeric from the MacPython
package manager.

B.5 Setting the MATLAB Path

Once you have installed Cantera, you need to tell MATLAB where to find it. From the MATLAB “File” menu,
select “Set Path,” then press the button “Add with subfolders.” Navigate through the Cantera folder hierarchy to
‘matlab/toolbox/cantera/cantera’ and add it.

B.6 Environment Variables

These should not need to be set, but may be useful in some cases.

PYTHON_CMD If Python is not on the path, so that it cannot be found by simply typing “python,” then set this to
the full path to the Python interpreter.

CANTERA_DATA Cantera uses some data files, and needs to be able to find the folder these files are in. If you
install Cantera in the “usual” place on your system, it will find the folder. But if you install it somewhere else,
you can set this variable to the full path to the Cantera data folder. Alternatively, from your Python or MATLAB
script you can add the command

addDirectory(’/your/cantera/data/directory’)

The places Cantera looks by default for the data folder are:

Windows. “C:\ Common Program Files\ Cantera\ data”

Mac OS X. /Applications/Cantera/data

linux. /usr/local/cantera/data

Note that any location specified by CANTERA_DATA or addDirectory is searched first, before looking in these default
locations.

B.7 The Setup Script

On the linux and Mac platforms, the installation includes a script called “setup_cantera.” Depending on how you
installed Cantera, it may or may not be necessary to run this script before using Cantera. If you need to run it, copy it
to your home directory, and type

source ./setup_cantera

You can also add this command to your shell login script.
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