A. Review

1. Kinetic view of equilibrium: forward rate = backward rate
 \[k_a = \frac{1}{k_i} = \frac{[C_i]}{[C_i]} \]

2. Thermodynamic view of equilibrium
 a. \(\Delta G^\circ \text{rxn} = -RT \ln K_{eq} \)
 b. \(\Delta G^\circ \text{rxn} \) and \(K_{eq} \) independent of pressure
 c. \(G = H - TS; \) \(dG = -SdT + VdP \)
 d. \(a_i = \text{activity coefficient} = \frac{\Pi}{P_i} \) for ideal gases
 e. Table available for \(\Delta G^\circ \text{rxn} \)
 f. \(K_y = K_y, P_{tot} = K_{tot} \) are dependent on total pressure if \(\Delta n = 0, \) but they compensate for each other so \(K_{eq} \) is independent of pressure!
 g. Given \(K_{eq} \) and \(P_{tot}, \) we can find \(y_i \)'s @ equilibrium if we have \(y_{feed} \) (one reaction only)

\[K_{eq} = \frac{a_i^\alpha_i}{\Pi_i} \]

\[K_{eq} = K_y \cdot K_{P_{tot}} = K_y \cdot \Pi_i \]

\[K_{eq} = \sum_{i=1}^{n} y_i^\alpha_i \]

\[\Delta G_{\text{react}}^\circ = \alpha_i \Delta G_{f_i} \]

\[K_{eq} = K_y \cdot K_{P_{tot}} = K_y \cdot \Pi_i \]

\[K_{eq} = \sum_{i=1}^{n} y_i^\alpha_i \]

\[\Delta G_{\text{react}}^\circ = \sum_{i=1}^{n} \alpha_i \Delta G_{f_i} \]

B. More Concepts on equilibrium

• Hand-written notes…

C. Code Inputs

• \(Z_i \) low T range coefficients 300-1000 K
• \(Z_i \) high T range coefficients 1000-5000 K

\[\frac{\delta^e_i}{P} = \left(\sum_{i=1}^{l} \frac{\delta_i^e \cdot T_i^e}{i} \right) \frac{T_i}{T} \]

\[\frac{\delta^S_i}{P} = \left(\sum_{i=1}^{l} \frac{\delta_i^S \cdot T_i^e}{i} \right) \frac{T_i}{T} \]

• for ideal gas, \(C_p - C_v = R \)
• \(dH = C_p \ dT \) (i.e., no pressure dependence for ideal gas)
• \(dS = C_v \ dT \)
• \(dU = C_v \ dT \)

Approach

• Given expression for \(H_i^\circ(T) \) and \(S_i^\circ(T) \)

Get \(S_i \)

\[S_i - S_i^0 = \int_{T_i}^{T} -R \ d\ln P \]

Get \(S \) and \(H \)

\[S = \sum_i n_i S_i \]

\[H = \sum_i n_i H_i \]

get \(G = H - TS \)

minimize \(G \)

Sample Input Thermo Data

• (from NASA-Lewis)