#### Class 17

# Turbulence-Chemistry with Solid Reactions

#### Review of Mixture Fraction Approach

- 1. Definition of f
- **2**. Definition of  $g_f$
- 3. What are conserved scalars?
- 4. What is a PDF & how is it used?
- 5. What assumptions are involved?
- 6. Why can't this system be used for premixed systems?
- 7. Why can't we just used the mean values of T and C<sub>i</sub> in the reaction rate expressions?
- 8. How do you get mean values of T and  $C_i$ ?

### The Coal Gas Mixture Fraction

It is useful to define another progress variable  $\eta$  = the coal gas mixture fraction

$$\eta = \frac{m_c}{m_c + m_p + m_s}$$

Devolatilization

Char Oxidation

where  $m_c = mass$  of gas originating in the coal **Examples**:

 $\begin{array}{l} \text{volatiles} + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} \\ m_c = \text{mass of volatiles only} \\ \text{C(s)} + \text{O}_2 \rightarrow \text{CO}_2 \\ m_c = \text{mass of carbon released only} \\ (\text{i.....e., the "C" part of the CO}_2) \end{array}$ 

#### **Calculating The Coal Gas Mixture Fraction**

Conservation Equation (convection, diffusion, source term)

$$\vec{\nabla} \cdot \left( \overline{\rho} \widetilde{\vec{v}} \, \widetilde{\eta} - D_{\eta}^{t} \overline{\nabla} \, \widetilde{\eta} \right) = S_{p}^{m}$$

 $S_p^m$  = net mass addition to the gas phase from the condensed phase (due to evaporation, devolatilization, and heterogeneous oxidation)

Also calculate variation in  $\eta$ 

$$\vec{\nabla} \cdot \left( \overline{\rho} \widetilde{\vec{v}} g_{\eta} - D_{\eta}^{t} \overline{\nabla} g_{\eta} \right) = S_{g_{\eta}}$$

$$S_{g_{\eta}} = C_{g_{1}} D_{\eta}^{t} \left[ \left( \frac{\partial \widetilde{\eta}}{\partial x} \right)^{2} + \left( \frac{\partial \widetilde{\eta}}{\partial r} \right)^{2} + \left( \frac{\partial \widetilde{\eta}}{\partial \theta} \right)^{2} \right] - C_{g_{2}} \overline{\rho} \left( \frac{\varepsilon}{k} \right) g_{\eta}$$

| Equation                              | ¢               | $\Gamma_{\phi}$                              | Sé                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------|-----------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Continuity                            | 1               | 0                                            | $S_p^m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| X Momentum                            | $\tilde{u}$     | $\mu_{e}$                                    | $-\frac{\partial \tilde{p}}{\partial x} + \frac{\partial}{\partial x} \left( \mu_e \frac{\partial \tilde{u}}{\partial x} \right) + \frac{\partial}{\partial y} \left( \mu_e \frac{\partial \tilde{v}}{\partial x} \right) + \frac{\partial}{\partial z} \left( \mu_e \frac{\partial \tilde{w}}{\partial x} \right) + \tilde{\rho} g_x - \frac{2}{3} \tilde{\rho} \tilde{k} + S_p^u + \tilde{u} S_y^u + \tilde{v} S_y^u + \tilde{v}$ |
| Y Momentum                            | $\tilde{v}$     | $\mu_e$                                      | $-\frac{\partial \rho}{\partial y} + \frac{\partial}{\partial x} \left( \mu_{e} \frac{\partial \tilde{u}}{\partial y} \right) + \frac{\partial}{\partial y} \left( \mu_{e} \frac{\partial \tilde{v}}{\partial y} \right) + \frac{\partial}{\partial z} \left( \mu_{e} \frac{\partial \tilde{w}}{\partial y} \right) + \tilde{\rho} g_{y} - \frac{2}{3} \tilde{\rho} \tilde{k} + S_{p}^{y} + \tilde{v} S_{p}^{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Z Momentum                            | ŵ               | μ                                            | $\cdot \frac{\partial p}{\partial z} + \frac{\partial}{\partial x} \left( \mu_{e} \frac{\partial \widetilde{u}}{\partial z} \right) + \frac{\partial}{\partial y} \left( \mu_{e} \frac{\partial \widetilde{v}}{\partial z} \right) + \frac{\partial}{\partial \overline{z}} \left( \mu_{e} \frac{\partial \widetilde{w}}{\partial \overline{z}} \right) + \widetilde{\rho}_{g_{z}} - \frac{2}{3} \widetilde{\rho} \widetilde{k} + S_{p}^{W} + \widetilde{w} S_{p}^{M}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Turbulent Energy                      | k               | $\frac{\mu_s}{\overline{\sigma}_k}$          | $G = \widetilde{p}\widetilde{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dissipation Rate                      | ŝ               | 14<br>17                                     | $\binom{\hat{i}}{\hat{j}}(e_1G - e_2\tilde{p}\tilde{i})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mixture Fraction                      | $\overline{f}$  | $\frac{\mu_{\theta}}{\overline{\sigma}_{f}}$ | $S_p^f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mixture Fraction<br>Variance          | ŝ               | $\frac{\mu_{e}}{\sigma_{g}}$                 | $\frac{c_{g1}}{c_{g}}^{\mu_{g}} \left[ \left( \frac{\delta j}{\delta_{g}} \right)^{2} + \left( \frac{\delta j}{\delta_{y}} \right)^{2} + \left( \frac{\delta j}{\delta_{g}} \right)^{2} \right] - c_{g2} \tilde{\rho}_{g2}^{\mu\nu} / \tilde{\lambda}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Coal Gas<br>Mixture Fraction          | ñ               | $\frac{\mu_{a}}{\alpha_{\eta}}$              | $S_p^{\eta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Coal Gas Mixture<br>Praction Variance | ε̃ <sub>n</sub> | $\frac{\alpha}{\frac{\alpha}{g\eta}}$        | $c_{g^{1}}\frac{\mu_{g}}{\sigma_{g^{q}}}\left[\left(\frac{\partial \tilde{\eta}}{\partial s}\right)^{2} + \left(\frac{\partial \tilde{\eta}}{\partial y}\right)^{2} + \left(\frac{\partial \tilde{\eta}}{\partial s}\right)^{2}\right] - c_{g^{2}}\tilde{p}\tilde{q}_{\eta}\frac{\tilde{q}}{\tilde{s}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Enthalpy                              | $\vec{h}$       | $\frac{\mu_d}{\sigma_h}$                     | $q'_{rg} + \left(\tilde{u}\frac{\partial p}{\partial x} + \tilde{v}\frac{\partial p}{\partial y} + \tilde{w}\frac{\partial p}{\partial z}\right) + S^h_p + \tilde{h}S^m_p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| where:                                | -               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### **Need new mixture fraction**

Since  $\rho = \frac{total \ mass}{volume} = \frac{m_c + m_p + m_s}{volume}$ 

the equation for f must be changed. Define  $f_p$ 

$$f_{p} = \frac{m_{p}}{m_{c} + m_{p} + m_{s}} = \left\{ \frac{m_{p}}{(m_{p} + m_{s})} \right\} \left\{ \frac{(m_{p} + m_{s})}{m_{c} + m_{p} + m_{s}} \right\} = f \cdot (1 - \eta)$$

The equation for  $f_p$  becomes:

 $\vec{\nabla} \cdot \left( \overline{\rho} \widetilde{\vec{v}} \widetilde{f}_p - D_{f_p}^t \overline{\nabla} \widetilde{f}_p \right) = 0$ 

refer to Smoot & Smith, Figure 13.1



f = mass fraction of primary carrier gas
 in inlet gas (dmi)

 $= dm_p/dm_i = dm_p/(dm_p + dm_s)$ 

- fp= mass fraction of primary carrier gas in total gas mass (dm)
  - $= dm_p/dm = dm_p/(dm_i + dm_c)$
  - $= dm_p/(dm_p + dm_s + dm_c)$

 $\begin{aligned} \eta &= \text{ mass fraction of coal off-gas} \\ &\text{ in total gas mass (dm)} \\ &= dm_c/dm = dm_c/(dm_i + dm_c) \\ &= dm_c/(dm_p + dm_s + dm_c) \end{aligned}$ 

Figure 13.1. Components of an element of gas mass dm.

#### Main Idea

- (a) Get split between pri & sec using f (elemental composition)
- (b) Get coal off-gas using  $\eta$  (elemental composition)

Assumptions:

- 1.  $\eta$  and f are independent  $\Rightarrow \tilde{f}_p = \tilde{f} \cdot (1 \tilde{\eta})$
- All coal off-gas has the same elemental composition throughout combustion (see Figs. 13.2, 13.3, & 13.4 in Smoot & Smith)





**Figure 13.2.** Fraction of carbon released to the gas phase from the coal particles for two different coal types (used with permission from Asay, 1982). Points are experimental data; solid line has slope of 1.0. Primary velocity  $\sim$ 15 m/s, primary temperature 300 K, and secondary temperature 590 K.

Figure 13.4. Fraction of hydrogen released to the gas phase from the coal for two different coal types. Solid line has a slope of 1.0. (Figure used with permission from Asay, 1982.)



#### **Figure 13.3.** Fraction of nitrogen released to the gas phase from the coal from two different coal types. Solid line has a slope of 1.0. (Figure used with permission from Asay, 1982.)

#### Nitrogen

### How do you use $\eta$ ?

To get elemental composition,

$$b_{k} = b_{kc}\eta + (1 - \eta) [fb_{kp} + (1 - f)b_{ks}] \quad (Eqn.13.7)$$

Where  $b_k$  = elemental mass fraction of element "k". If we assume local equilibrium, we only need the enthalpy and the pressure to get properties:

$$y_i = f(b_k, h) = f(f, \eta, h)$$
$$T = f(b_k, h) = f(f, \eta, h)$$

etc.

Locally adiabatic means  $h = f(f,\eta)$  !! (very rare) (We'll discuss this later)

## Putting it all together

Assume  $P(\eta, f) = P(\eta) P(f)$  (for convenience mainly)

Mean value, convoluted over joint PDF is:

$$\widetilde{\beta} = \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} \beta(\eta, f) P(f) P(\eta) df d\eta$$

• 2-D table needed for T,  $y_i$ , etc., vs.  $\eta$  and f

#### **Consider Intermittency of f**

- $\alpha_p$  = when f = 1 (i.e., pure primary)
- $\alpha_s$  = when f = 0 (i.e., pure secondary)
- Use intermittency to limit integrals to be from 0 to 1

$$\widetilde{\beta} = \int_{-\infty}^{\infty} \left[ \int_{-\infty}^{\infty} \beta(\eta, f) P(f) df \right] P(\eta) d\eta$$
$$\widetilde{\beta} = \int_{-\infty}^{\infty} \left[ \int_{-\infty}^{0} \beta(\eta, f) P(f) df + \int_{0}^{1} \beta(\eta, f) P(f) df + \int_{1}^{\infty} \beta(\eta, f) P(f) df \right] P(\eta) d\eta$$

#### Intermittency (cont.)

Changing inside integrals to intermittency:



#### Consider Intermittency of $\eta$

 $\alpha_c$  = when  $\eta$  = 1 (i.e., pure coal off-gas)  $\alpha_i$  = when  $\eta$  = 0 (i.e., pure inlet gas; pri & sec only)

$$\widetilde{\beta} = \alpha_c \beta_c + \alpha_s \beta_s + \int_0^1 \beta(0, f) P(f) df + \alpha_s \beta_s + \int_0^1 \beta(\eta, f) P(f) df + \alpha_s \int_0^1 \beta(\eta, f) P(\eta) d\eta + \alpha_s \int_0^1 \beta(\eta, f) P(\eta) d\eta + \alpha_s \int_0^1 \beta(\eta, f) P(f) df P(\eta) d\eta$$

### What about h???

Possible approaches:

Assume adiabatic locally so  $h = f(f,\eta)$ Assume no fluctuations in h PDF in h so  $P(f,\eta,h) = P(f)P(\eta)P(h)$ Divide up h into mixing part and residual  $\tilde{h} = \tilde{h}_m + \tilde{h}_r$   $h_m = h_c \eta + (1-\eta) [fh_p + (1-f)h_s]$   $\tilde{h}_m = \int_{-\infty-\infty}^{\infty} \tilde{h}_m P(f)P(\eta) df d\eta$  $h_r = residual (\tilde{h} - h_m)$ , where  $\tilde{h}$  is from conservation equation

### How does this help?

 $\beta(\eta, f, h) = \beta(\eta, f, h_r)$ 

- Don't allow fluctuations in h<sub>r</sub>
- Equilibrium table for β (i.e., given η,f,h<sub>r</sub>, find β from pre-stored array)
- Advantage: you can set limits on h<sub>r</sub>, and hence limit table size



#### **2-η Approach**