CFD with Combustion
using Fluent
PCGC-3
Coal Combustion

- Turbulence
- Gas Fluid Dynamics
- Gaseous Combustion
- Numerics
- Heat Transfer
- Particle Mechanics
- Particle Reactions
- Nitrogen Pollutants
General Procedure

- Pick geometry
- Pick variables
 - Turbulent vs laminar
 - Gaseous vs particle-laden
 - Adiabatic?
 - Reacting?
 - Steady-state?
 - Radiation?

- Set up grid system to solve basic equations
 - Cartesian, radial, or spherical?
 - Staggered vs collocated grid
 - “Stair-step” boundary vs. more complicated gridding
 - unstructured mesh, body-fitted coordinates, etc.
 - Finite difference, finite volume, finite element

Goal: Solve all conservation equations for continuum phase as painlessly as possible with one algorithm
\[
\frac{\partial (\rho \phi)}{\partial t} + \frac{\partial (\rho \phi \mathbf{v})}{\partial x} + \frac{\partial (\rho \phi \mathbf{w})}{\partial y} - \frac{\partial}{\partial x} \left(\Gamma \phi \frac{\partial\phi}{\partial x} \right) - \frac{\partial}{\partial y} \left(\Gamma \phi \frac{\partial\phi}{\partial y} \right) - \frac{\partial}{\partial z} \left(\Gamma \phi \frac{\partial\phi}{\partial z} \right) = S_\phi
\]

<table>
<thead>
<tr>
<th>Equation</th>
<th>(\phi)</th>
<th>(\Gamma \phi)</th>
<th>(S_\phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuity</td>
<td>1</td>
<td>0</td>
<td>(S_p^m)</td>
</tr>
<tr>
<td>X Momentum</td>
<td>(\mathbf{u})</td>
<td>(\mu_e)</td>
<td>(-\frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left(\rho \mathbf{v} \phi \right) - \frac{\partial}{\partial y} \left(\Gamma \phi \frac{\partial\phi}{\partial y} \right) - \frac{\partial}{\partial z} \left(\Gamma \phi \frac{\partial\phi}{\partial z} \right) + \rho \frac{\partial \mathbf{u}}{\partial x} - \frac{2}{3} \frac{\partial p}{\partial x} + S_p^u + \mathbf{u} S_p^m)</td>
</tr>
<tr>
<td>Y Momentum</td>
<td>(\mathbf{v})</td>
<td>(\mu_e)</td>
<td>(-\frac{\partial p}{\partial y} + \frac{\partial}{\partial x} \left(\rho \mathbf{v} \phi \right) + \frac{\partial}{\partial y} \left(\rho \mathbf{v} \phi \right) - \frac{\partial}{\partial z} \left(\Gamma \phi \frac{\partial\phi}{\partial z} \right) + \rho \frac{\partial \mathbf{v}}{\partial y} - \frac{2}{3} \frac{\partial p}{\partial y} + S_p^v + \mathbf{v} S_p^m)</td>
</tr>
<tr>
<td>Z Momentum</td>
<td>(\mathbf{w})</td>
<td>(\mu_e)</td>
<td>(-\frac{\partial p}{\partial z} + \frac{\partial}{\partial x} \left(\rho \mathbf{v} \phi \right) + \frac{\partial}{\partial y} \left(\rho \mathbf{v} \phi \right) + \frac{\partial}{\partial z} \left(\Gamma \phi \frac{\partial\phi}{\partial z} \right) + \rho \frac{\partial \mathbf{w}}{\partial z} - \frac{2}{3} \frac{\partial p}{\partial z} + S_p^w + \mathbf{w} S_p^m)</td>
</tr>
<tr>
<td>Turbulent Energy</td>
<td>(\bar{k})</td>
<td>(\mu_e)</td>
<td>(\frac{\partial^2 \bar{k}}{\partial x^2} + \frac{\partial^2 \bar{k}}{\partial y^2} + \frac{\partial^2 \bar{k}}{\partial z^2} - \frac{\partial \bar{u}}{\partial x} \frac{\partial \bar{u}}{\partial x} - \frac{\partial \bar{v}}{\partial y} \frac{\partial \bar{v}}{\partial y} - \frac{\partial \bar{w}}{\partial z} \frac{\partial \bar{w}}{\partial z})</td>
</tr>
<tr>
<td>Dissipation Rate</td>
<td>(\bar{\varepsilon})</td>
<td>(\mu_e)</td>
<td>(\frac{\partial \bar{k}}{\partial x} \frac{\partial \bar{k}}{\partial x} - \frac{\partial \bar{u}}{\partial x} \frac{\partial \bar{u}}{\partial x} - \frac{\partial \bar{v}}{\partial y} \frac{\partial \bar{v}}{\partial y} - \frac{\partial \bar{w}}{\partial z} \frac{\partial \bar{w}}{\partial z})</td>
</tr>
<tr>
<td>Mixture Fraction</td>
<td>(\bar{f})</td>
<td>(\mu_e)</td>
<td>(\frac{\partial \bar{f}}{\partial x} + \frac{\partial \bar{f}}{\partial y} + \frac{\partial \bar{f}}{\partial z} - \frac{\partial \bar{u}}{\partial x} - \frac{\partial \bar{v}}{\partial y} - \frac{\partial \bar{w}}{\partial z})</td>
</tr>
<tr>
<td>Mixture Fraction Variance</td>
<td>(\bar{g})</td>
<td>(\mu_e)</td>
<td>(\frac{\partial \bar{g}}{\partial x} + \frac{\partial \bar{g}}{\partial y} + \frac{\partial \bar{g}}{\partial z} - \frac{\partial \bar{u}^2}{\partial x} - \frac{\partial \bar{v}^2}{\partial y} - \frac{\partial \bar{w}^2}{\partial z})</td>
</tr>
<tr>
<td>Coal Gas Mixture Fraction</td>
<td>(\bar{\eta})</td>
<td>(\mu_e)</td>
<td>(\frac{\partial \bar{\eta}}{\partial x} + \frac{\partial \bar{\eta}}{\partial y} + \frac{\partial \bar{\eta}}{\partial z} - \frac{\partial \bar{u}}{\partial x} - \frac{\partial \bar{v}}{\partial y} - \frac{\partial \bar{w}}{\partial z})</td>
</tr>
<tr>
<td>Coal Gas Mixture Fraction Variance</td>
<td>(\bar{g}_{\eta})</td>
<td>(\mu_e)</td>
<td>(\frac{\partial \bar{g}{\eta}}{\partial x} + \frac{\partial \bar{g}{\eta}}{\partial y} + \frac{\partial \bar{g}_{\eta}}{\partial z} - \frac{\partial \bar{u}^2}{\partial x} - \frac{\partial \bar{v}^2}{\partial y} - \frac{\partial \bar{w}^2}{\partial z})</td>
</tr>
<tr>
<td>Enthalpy</td>
<td>(\bar{h})</td>
<td>(\mu_e)</td>
<td>(\bar{h} + \frac{\partial \bar{h}}{\partial x} + \frac{\partial \bar{h}}{\partial y} + \frac{\partial \bar{h}}{\partial z} + \frac{\partial \bar{P}}{\partial x} + \frac{\partial \bar{P}}{\partial y} + \frac{\partial \bar{P}}{\partial z})</td>
</tr>
</tbody>
</table>

where:

\[G = \mu_e \left\{ 2 \left[\left(\frac{\partial \bar{u}}{\partial x} \right)^2 + \left(\frac{\partial \bar{v}}{\partial y} \right)^2 + \left(\frac{\partial \bar{w}}{\partial z} \right)^2 + \left(\frac{\partial \bar{v}}{\partial x} + \frac{\partial \bar{w}}{\partial y} \right)^2 + \left(\frac{\partial \bar{w}}{\partial x} + \frac{\partial \bar{u}}{\partial z} \right)^2 + \left(\frac{\partial \bar{u}}{\partial y} + \frac{\partial \bar{v}}{\partial z} \right)^2 \right] \right\} \]