CFD with Combustion

using Fluent

General Procedure

- Pick geometry
- Pick variables
 - Turbulent vs laminar
 - Gaseous vs particle-laden
 - Adiabatic?
 - Reacting?
 - Steady-state?
 - Radiation?

- Set up grid system to solve basic equations
 - Cartesian, radial, or spherical?
 - Staggered vs collocated grid
 - "Stair-step" boundary vs. more complicated gridding
 - unstructured mesh, bodyfitted coordinates, etc.
 - Finite difference, finite volume, finite element

Goal: Solve all conservation equations for continuum phase as painlessly as possible with one algorithm

Boustion	+ 	- Ōy	$= + \frac{1}{\partial x} - \frac{1}{\partial x} \left[\Gamma_{\phi} \frac{1}{\partial x} \right] - \frac{1}{\partial y} \left[\Gamma_{\phi} \frac{1}{\partial y} \right] - \frac{1}{\partial z} \left[\Gamma_{\phi} \frac{1}{\partial z} \right] = S_{\phi}$
			~0
Continuity	1	0	S_p^m
X Momentum	\tilde{u}	μ_{σ}	$-\frac{\partial \widetilde{p}}{\partial x} + \frac{\partial}{\partial x} \left(\mu_e \frac{\partial \widetilde{u}}{\partial x} \right) + \frac{\partial}{\partial y} \left(\mu_e \frac{\partial \widetilde{v}}{\partial x} \right) + \frac{\partial}{\partial \varepsilon} \left(\mu_e \frac{\partial \widetilde{w}}{\partial x} \right) + \widetilde{\rho} g_x - \frac{2}{3} \widetilde{\rho} \widetilde{k} + S_p^{\mu} + \widetilde{u} S_p^{\mu}$
Y Momentum	$\tilde{\nu}$	μ_e	$-\frac{\partial p}{\partial y} + \frac{\partial}{\partial x} \left(\mu_{e} \frac{\partial \tilde{u}}{\partial y} \right) + \frac{\partial}{\partial y} \left(\mu_{e} \frac{\partial \tilde{v}}{\partial y} \right) + \frac{\partial}{\partial z} \left(\mu_{e} \frac{\partial \tilde{v}}{\partial y} \right) + \tilde{\rho} g_{y} - \frac{2}{3} \tilde{\rho} \tilde{k} + S_{p}^{y} + \tilde{v} S_{p}^{w}$
Z Momentum	ŵ	μ_{g}	$-\frac{\partial p}{\partial z} + \frac{\partial}{\partial x} \left(\mu_{e} \frac{\partial \tilde{u}}{\partial z} \right) + \frac{\partial}{\partial y} \left(\mu_{e} \frac{\partial \tilde{v}}{\partial z} \right) + \frac{\partial}{\partial z} \left(\mu_{e} \frac{\partial \tilde{w}}{\partial z} \right) + \tilde{\rho}_{g_{z}} - \frac{2}{3} \tilde{\rho} \tilde{k} + S_{p}^{W} + \tilde{w} S_{p}^{W}$
Turbulent Energy	k	$\frac{\mu_{s}}{\overline{\sigma_{k}}}$	$G = \widetilde{\rho} \widetilde{\epsilon}$
Dissipation Rate	ē	$\frac{\mu_e}{\sigma_e}$	$\binom{\widehat{i}}{\widehat{j}}(e_1G - e_2\overline{\rho}\overline{i})$
Mixture Fraction	\overline{f}	$\frac{\mu_{\theta}}{\overline{\sigma}_{f}}$	S_p^f
Mixture Fraction Variance	ŝ	$\frac{\mu_{\varrho}}{\overline{\sigma_g}}$	$\frac{c_{g1}\mu_g}{c_g} \left[\left(\frac{\delta \hat{f}}{\delta u} \right)^2 + \left(\frac{\delta \hat{f}}{\delta y} \right)^2 + \left(\frac{\delta \hat{f}}{\delta u} \right)^2 \right] - c_{g2} \tilde{\mu}_g^* \tilde{u} / \tilde{k}$
Coal Gas Mixture Fraction	ñ	$\frac{\mu_{a}}{\alpha_{\eta}}$	S_{P}^{η}
Coal Gas Mixture Praction Variance	Ĩ,	$\frac{\mu_{d}}{\sigma_{g\eta}}$	$c_{g^{1}}\frac{\mu_{g}}{\sigma_{g^{\eta}}}\left[\left(\frac{\partial\tilde{\eta}}{\partial s}\right)^{2} + \left(\frac{\partial\tilde{\eta}}{\partial p}\right)^{2} + \left(\frac{\partial\tilde{\eta}}{\partial s}\right)^{2}\right] - c_{g^{2}}\tilde{p}g_{\eta}\frac{\tilde{q}}{k}$
Enthalpy	\vec{h}	$\frac{\mu_{g}}{\sigma_{h}}$	$q_{rg}^{*} + \left(\tilde{u}\frac{\partial p}{\partial x} + \tilde{v}\frac{\partial p}{\partial y} + \tilde{w}\frac{\partial p}{\partial z}\right) + s_{p}^{h} + \tilde{h}s_{p}^{m}$

where:

 $G \!=\! \mu_s \! \left\{ 2 \! \left[\! \left(\! \frac{\partial \tilde{u}}{\partial x} \! \right)^2 + \! \left(\! \frac{\partial \tilde{v}}{\partial y} \! \right)^2 + \! \left(\! \frac{\partial \tilde{w}}{\partial z} \! \right)^2 \right] \! + \! \left(\! \frac{\partial \tilde{u}}{\partial y} \! + \! \frac{\partial \tilde{v}}{\partial x} \! \right)^2 + \! \left(\! \frac{\partial \tilde{u}}{\partial z} \! + \! \frac{\partial \tilde{w}}{\partial x} \! \right)^2 + \! \left(\! \frac{\partial \tilde{v}}{\partial z} \! + \! \frac{\partial \tilde{w}}{\partial y} \! \right)^2 \right\}$