Radiation

Electromagnetic Spectrum

from Fundamentals of Heat and Mass Transfer, 4th Edition, Incorpera and DeWittt, Wiley (1996)

Planck's Law

FIGURE 12.13 Spectral blackbody emissive power.

from Fundamentals of Heat and Mass Transfer, 4th Edition, Incorpera and DeWittt, Wiley (1996)

Non-Blackbody Emission

Transmissivity of Synthetic Sapphire

Glossary

Absorption	The process by which a medium attenuates (i.e., absorbs) electromagnetic energy (i.e., radiation) by converting it to thermal energy within the medium.
Absorptivity	Ratio of absorption cross section to geometric cross section of a particle (i.e., the ratio of energy absorbed to energy that could be absorbed based on projected particle surface area).
Albedo	Ratio of the scattering coefficient to the extinction coefficient.
Blackbody	Idealized body that emits the maximum radiation at a given temperature and wavelength (i.e., follows Planck's law). Total emissive power $E_b = \sigma T^4$.
Emission	Conversion of thermal energy to electromagnetic energy (radiation emitted).
Extinction	The process by which a medium attenuates intensity or electromagnetic radiation. Composed of absorption and scattering.
Flux	Energy per area per time.
Intensity	Energy per time per area normal to direction per unit solid angle per wavelength. ($W/m^2/sr/\mu m$) Or flux per unit solid angle per wavelength.
Net Flux	The difference between the flux passing through a plane in one direction minus the flux passing in the other direction.
Scattering	Redirection of electromagnetic energy (intensity) due to electromagnetic wave interaction with surface interfaces of differing index of refraction.
Scattering Phase Function	Ratio of scattered intensity in a given direction to the scattered intensity from isotropic scattering.
Solid Angle	Area on a sphere divided by the square of the sphere radius. Allows for integration over direction. Dimensionless unit of steradian.
Spectral	Radiation or radiative property per unit wavelength.
Total	Integrated over the entire wavelength range of the electromagnetic spectrum.

Spectral and Directional Radiation

FIGURE 12.4 Radiation emitted by a surface. (a) Spectral distribution. (b) Directional distribution.

from Fundamentals of Heat and Mass Transfer, 4th Edition, Incorpera and DeWittt, Wiley (1996)

The Radiative Transfer Equation (RTE)

 $\frac{1}{c}\frac{\partial I_{\lambda}}{\partial t} + \vec{\nabla} \cdot \hat{\Omega} I_{\lambda} + (\kappa_{\lambda} + \sigma_{\lambda}) I_{\lambda} = \kappa_{\lambda} I_{\lambda b}(T) + \frac{\sigma_{\lambda}}{4\pi} \int_{\Omega' = 4\pi} \Phi_{\lambda}(\Omega', \Omega) I_{\lambda}(\Omega) d\Omega'$

- c = speed of light
- Ω = direction
- I_{λ} = intensity
- $I_{\lambda b}$ = blackbody emission
- κ_{λ} = absorption coefficient
- σ_{λ} = scattering coefficient
- $\Phi_{\lambda}(\Omega',\Omega)$ = Phase function for light scattered into Ω direction from Ω' direction
- $I_{\lambda'}$ = intensity of light from Ω ' direction

- c = speed of light
- $\Omega = direction$
- I_{λ} = intensity
- $I_{\lambda b}$ = blackbody emission
- κ_{λ} = absorption coefficient
- σ_{λ} = scattering coefficient
- $\Phi_{\lambda}(\Omega',\Omega)$ = Phase function for light scattered into Ω direction from Ω' direction
- $I_{\lambda'}$ = intensity of light from Ω ' direction

Path-Length Dependence

Mineral matter in coal and the thermal performance of large boilers

from Wall et al., PECS, 5, 1-29 (1979)

TABLE 11.	Effect of ash	absorption	area	on	heat	absorbed	in
		furnace					

	Ash cloud absorption area (m²/kg)	Mean particle absorption efficiency	Heat absorbed in furnace (MW)
1755	58.4	0.7	362.5
	41.7	0.5	338.9
	10.4	0.125	271.8

Fluent Radiation Options

- Radiation Model					
Model Iteration Parameters					
↔ Off	Flow Iterations per Radiation Iteration 10				
✓ Rosseland ↓ P1	Number of DTRM Sweeps 1				
 Discrete Transfer (DTRM) Surface to Surface (S2S) 	Tolerance 0.001				
 ✓ Discrete Ordinates (DO) 					
Solar Load					
Model	Sun Direction Vector				
	X • V • Z 1				
 Solar Ray Tracing DO Invediation 	Use Direction Computed from Solar Calculator				
	Illumination Parameters				
Solar Calculator	Direct Solar Irradiation (w/m2) constant				
Update Parameters	1423				
Solar Load Update	Diffuse Solar Irradiation (w/m2) constant				
	200				
	Spectral Fraction [V/(V+IR)] 0.5				
	OK Cancel Help				

