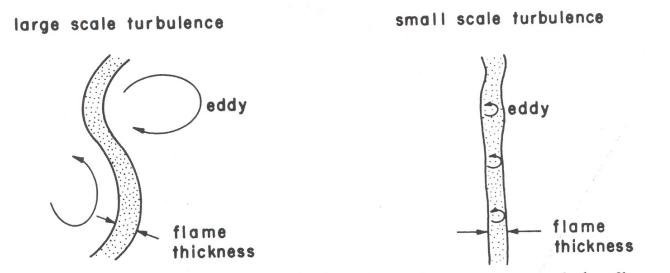
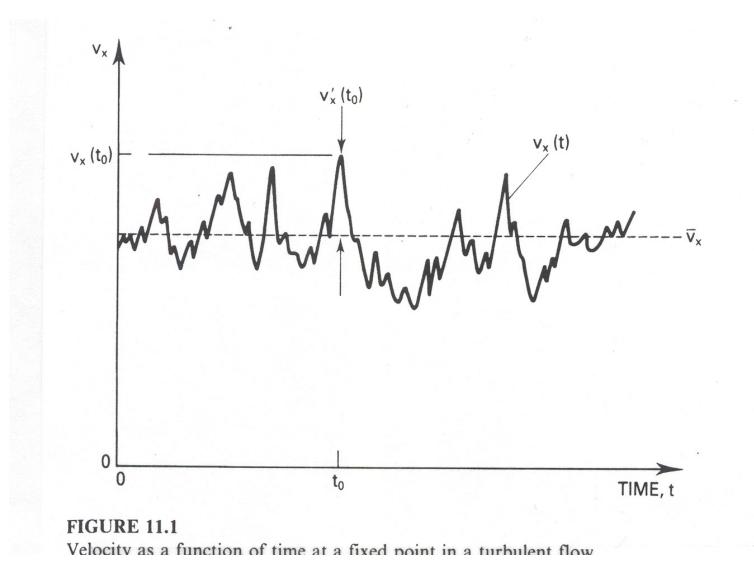
Turbulent Flames



From Kuo's book



From Turns book

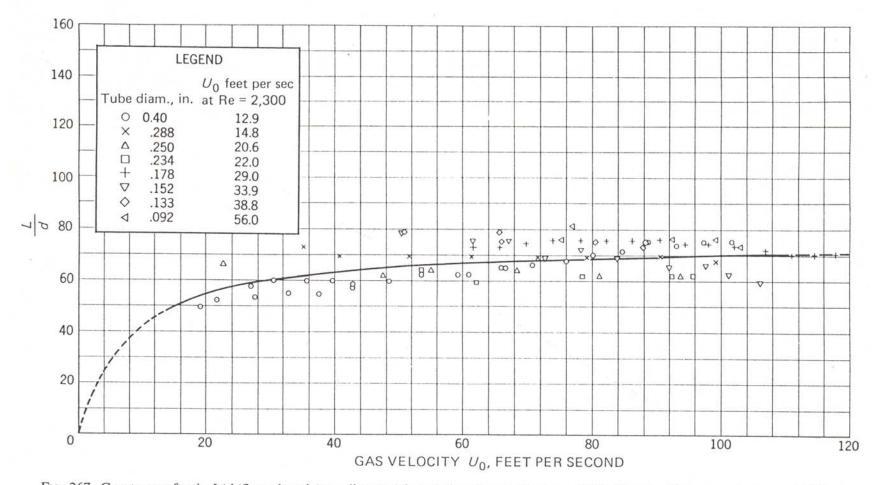


FIG. 267. Constancy of ratio L/d (flame length/port diameter) in turbulent flames. Mixture of 50% Newark, Delaware, city gas and 50% air. U_0 , gas velocity at port. Flames burning free in air (Wohl, Gazley, and Kapp³).

Turbulence Closure Problem

Let the instantaneous velocity be broken up into a mean and a fluctuating component:

$$u = \overline{u} + u'$$

The momentum equation can then be written as:

$$\frac{\partial}{\partial t} \left(\overline{u}_{j} + u_{j}' \right) + \frac{\partial}{\partial x_{i}} \left[\left(\overline{u}_{j} + u_{j}' \right) \left(\overline{u}_{j} + u_{j}' \right) \right] = \frac{\partial}{\partial x_{i}} \left[-\delta_{ij} \left(\overline{P} + P' \right) + \left(\overline{\tau}_{ij} + \tau_{ij}' \right) \right]$$

where body forces have been neglected, and where $\left[\left(\begin{array}{c} \partial \overline{u} & \partial \overline{u} \end{array}\right)\right]$

$$\overline{\tau}_{ij} \equiv \nu \left[\left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i} \right) \right] \qquad \qquad \tau'_{ij} \equiv \nu \left[\left(\frac{\partial u'_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right]$$

Substituting and then averaging the entire equation over time gives the following equation:

$$\frac{\partial}{\partial t} \left(\overline{u}_{j} \right) + \frac{\partial}{\partial x_{i}} \left(\overline{u}_{i} \overline{u}_{j} + \overline{u_{i}' u_{j}'} \right) = \frac{\partial}{\partial x_{i}} \left[-\delta_{ij} \overline{P} + \overline{\tau}_{ij} \right]$$

The turbulence closure problem is how to model $\overline{u'_i u'_j}$.

Boussinesq Hypothesis

The most convenient way to model the Reynolds stress is defining an effective turbulent viscosity (I), as follows:

$$-\overline{u_i'u_j'} = \Gamma\left(\frac{\partial \overline{u_i}}{\partial x_j} + \frac{\partial \overline{u_j}}{\partial x_i}\right)$$

This effective turbulent viscosity is then modeled by one of several models, as follows.

A. Prandtl mixing length

$$\Gamma = C \left(\overline{u'u'} \right)^{0.5} l_m$$

where C is a constant, l_m is a mixing length that is specified, and $(\overline{u'u'})^{0.5}$ is the turbulence intensity that is specified.

<u>B. k-ε model</u>

$$\Gamma = C_{\mu}k^2 / \varepsilon$$

where C_{μ} is a constant, k is the turbulent kinetic energy $\overline{u'u'}/2$, and ε is the rate of dissipation of k. Transport equations have been developed for both k and ε .

The exact transport equations for the transport of the Reynolds stresses, $\rho \overline{u'_i u'_j}$, may be written as follows:

Reynolds Stress Model

$$\frac{\partial}{\partial t}(\rho \ \overline{u'_i u'_j}) + \frac{\partial}{\partial x_k}(\rho u_k \overline{u'_i u'_j}) = -\frac{\partial}{\partial x_k} \left[\rho \ \overline{u'_i u'_j u'_k} + \overline{p(\delta_{kj} u'_i + \delta_{ik})} \right]$$
Local Time Derivative $C_{ij} \equiv \text{Convection}$ $D_{T,ij} \equiv \text{Turbulent Diffusion}$

$$+ \frac{\partial}{\partial x_k} \left[\mu \frac{\partial}{\partial x_k} (\overline{u'_i u'_j}) \right] - \frac{\rho(\overline{u'_i u'_k} \frac{\partial u_j}{\partial x_k} + \overline{u'_j u'_k} \frac{\partial u_i}{\partial x_k})}{P_{ij} \equiv \text{Stress Production}} G_{ij} = \overline{\text{Buoyancy}}$$

$$+ \frac{\overline{p(\partial u'_i u'_k + \partial u'_j)}}{P_{ij} \equiv \text{Pressure Strain}} - \frac{\rho(\overline{u'_i u'_k} \frac{\partial u'_i}{\partial x_k} \frac{\partial u'_i}{\partial x_k})}{P_{ij} \equiv \overline{\text{Dissipation}}} G_{ij} = \overline{\text{Buoyancy}}$$
Boxes represent terms that must be modeled to modeled the modeled surve Term (11.6-1)}

$$\underbrace{-\frac{\partial}{\partial x_k} \left[\overline{(u_i'u_j'u_k')} + \overline{\frac{p}{\rho}(\delta_{kj}u_i' + \delta_{ik}u_j')} - \nu \frac{\partial}{\partial x_k} \overline{(u_i'u_j')} \right]}_{\text{Diffusive Transport}} = \frac{\partial}{\partial x_k} \left(\frac{\nu_t}{\sigma_k} \frac{\partial \overline{(u_i'u_j')}}{\partial x_k} \right)$$

$$\underbrace{(6.2-15)}_{\left[\frac{p}{\rho} \left[\frac{\partial u_i'}{\partial x_j} + \frac{\partial u_j'}{\partial x_i} \right]}_{\left[\frac{p}{\rho} \left[\frac{\partial u_i'}{\partial x_j} + \frac{\partial u_j'}{\partial x_i} \right]} = -C_3 \frac{\epsilon}{k} \left[\overline{u_i'u_j'} - \frac{2}{3} \delta_{ij}k \right] - C_4 \left[P_{ij} - \frac{2}{3} \delta_{ij}P \right]$$

$$\underbrace{(6.2-16)}_{\left[\frac{p}{\rho} - \frac{2}{3} \delta_{ij}P \right]}_{\left[\frac{p}{\rho} - \frac{2}{3} \delta_{ij}P \right]}$$

where C_3 and C_4 are empirical constants whose values are $C_3 = 1.8$ and $C_4 = 0.60$, $P = \frac{1}{2}P_{ii}$, and

$$P_{ij} = -\overline{u'_i u'_k} \ \frac{\partial u_j}{\partial x_k} - \overline{u'_j u'_k} \ \frac{\partial u_i}{\partial x_k}$$
(6.2-17)

Finally, the dissipation term in Equation 6.2-14 is assumed to be isotropic and is approximated via the scalar dissipation rate[46]:

$$2\nu \overline{\frac{\partial u_i'}{\partial x_k}} \frac{\partial u_j'}{\partial x_k} = \frac{2}{3} \delta_{ij} \epsilon \qquad (6.2-18)$$

v'v' Equation

$$\begin{bmatrix} 1 + \frac{4}{3}\lambda\left(\frac{k}{\varepsilon}\right)\frac{\partial\overline{v}}{\partial x}\end{bmatrix}\overline{v'v'} = \frac{2}{3}k + \frac{2}{3}\lambda\frac{k}{\varepsilon}\left\{\left(\frac{\partial\overline{u}}{\partial x}\right)\overline{u'u'} + \frac{\partial\overline{u}}{\partial r} - 2\frac{\partial\overline{v}}{\partial x}\right\}\overline{v'u'} + \left(\frac{\overline{v}}{r}\right)\overline{w'w'} + \left(\frac{\partial\overline{w}}{\partial r} + \frac{\overline{w}}{r}(2+3\beta)\right]\overline{v'w'} + \left(\frac{\partial\overline{w}}{\partial x}\right)\overline{w'u'}$$

u'u' Equation:

$$\begin{bmatrix} 1 + \frac{4}{3}\lambda\left(\frac{k}{\varepsilon}\right)\frac{\partial \overline{u}}{\partial x}\end{bmatrix}\overline{u'u'} = \frac{2}{3}k + \frac{2}{3}\lambda\frac{k}{\varepsilon}\left\{\left(\frac{\partial \overline{v}}{\partial r}\right)\overline{v'v'} + \left(\frac{\partial \overline{v}}{\partial x} - 2\frac{\partial \overline{u}}{\partial r}\right)\overline{v'u'} + \left(\frac{\partial \overline{w}}{\partial r} - \frac{w}{r}\right)\overline{v'w'} + \left(\frac{\partial w}{\partial x}\right)\overline{w'u'}\right\}$$

v'u' Equation:

$$\left[1-\lambda \left(\frac{k}{\varepsilon}\right)\frac{\overline{v}}{r}\right]\overline{v'u'} = \lambda \left(\frac{k}{\varepsilon}\right)\left[-\left(\frac{\widehat{c}\overline{u}}{\widehat{c}r}\right)\overline{v'v'} - \left(\frac{\widehat{c}\overline{v}}{\widehat{c}x}\right)\overline{u'u'} + \left(\frac{w}{r}\right)(1+\beta)\overline{w'u'}\right]$$

w'w' Equation:

$$\begin{bmatrix} 1 + \frac{4}{3}\lambda \left(\frac{k}{\varepsilon}\right)\frac{v}{r} \end{bmatrix} \overline{w'w'} = \frac{2}{3}k + \frac{2}{3}\lambda \left(\frac{k}{\varepsilon}\right) \left\{ \left(\frac{\partial v}{\partial r}\right)\overline{v'v'} + \left(\frac{\partial u}{\partial x}\right)\overline{u'u'} + \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial r}\right)\overline{v'u'} - \left[2\frac{\partial w}{\partial r} + (1+3\beta)\frac{w}{r} \right]\overline{v'w'} - 2\left(\frac{\partial w}{\partial x}\right)\overline{w'u'} \right\}$$

v'w' Equation:

$$\left[1-\lambda \binom{k}{\varepsilon} \frac{\partial \overline{u}}{\partial x}\right] \overline{v'w'} = \lambda \binom{k}{\varepsilon} \left\{ -\binom{\partial \overline{w}}{\partial r} + \beta \frac{\overline{w}}{r} \right) \overline{v'v'} - \binom{\partial \overline{w}}{\partial x} \overline{v'u'} + \left[(1+\beta) \frac{\overline{w}}{r} \right] \overline{w'w'} - \binom{\partial \overline{v}}{\partial x} \overline{w'u'} \right\}$$

w'u' Equation:

$$\left[1 - \lambda \left(\frac{k}{\varepsilon}\right) \frac{\partial \overline{v}}{\partial r}\right] \overline{w'u'} = \lambda \left(\frac{k}{\varepsilon}\right) \left\{ -\left(\frac{\partial \overline{w}}{\partial x}\right) \overline{u'u'} - \left(\frac{\partial \overline{w}}{\partial r} + \beta \frac{\overline{w}}{r}\right) \overline{v'u'} - \left(\frac{\partial \overline{u}}{\partial r}\right) \overline{v'w'} \right]$$
(81)
where $\beta = \psi/(1 - C_2)$
(82)

Algebraic Stress Model

Idea:

Write algebraic equations for each of the Reynolds stress terms

(77)

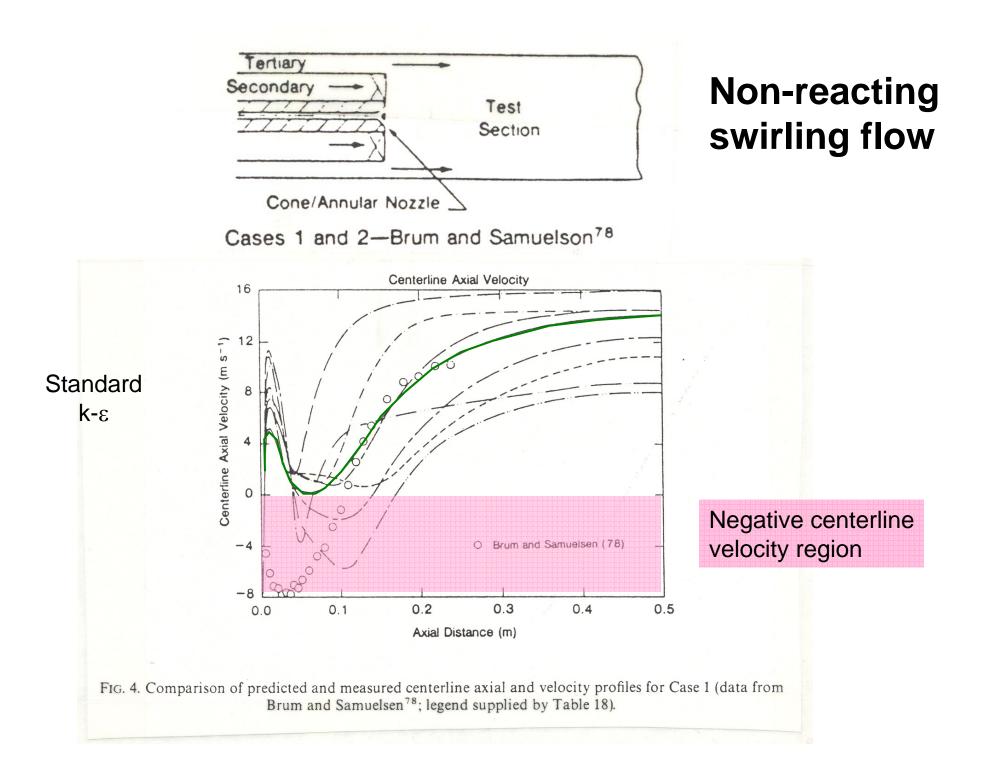
(78)

(79)

(80)

(76)

Note: No terms with $\frac{\partial}{\partial x} (\overline{u'u'})$



Modeling swirl in turbulent flow

			Case reference			
		Brum and Samuelsen ⁷⁸	2- 	Yoon ⁷¹		Roback and Johnson ¹⁶⁴
	Equations		161			
Turbulence model	of	2 × 2				
description/legend	reference	1	4		5	6
Standard $k - \varepsilon$ model	34-42					
LPS gradient Richardson no.*	108-110	$C_{gs} = 0.10$ MTS	$C_{gs} = 0.005$ TTS		$C_{gs} = 0.03$ MTS	$C_{gs} = 0.005$ TTS
Rodi flux Richardson no.*	114, 115	$C_{fs} = 0.90$ MTS	115		10113	$C_{fs} = 0.90$ MTS
"Boysan" Richardson no.	109, 112	$C_{gs} = 0.20$				101 1 5
Modified C_{μ} coefficient	134	$C_a = 0.03$ $C_b = 2.63$			$C_a = 0.03$ $C_b = 2.63$	
Gibson-Launder ASM* (I)	76–99	$C_1 = 2.5$ $C_2 = 0.55$	$C_1 = 2.5$ $C_2 = 0.55$		$C_{1} = 2.5$ $C_{2} = 0.55$	*
Gibson-Launder ASM (II) —	76–99	$C_1 = 2.0$ $C_2 = 0.40$	- 2		C ₂ =0.55	C ₂ = 0.55
Gibson–Launder ASM	76-99	$\psi = 0.40$	$\psi = 0.40$			
(III) added convection		$C_1 = 2.5$				
		$C_2 = 0.55$	$C_2 = 0.55$			

TABLE 18. Legend description for case studies

*MTS = Mean flow time scale in the denominator of the Richardson number.

TTS = Turbulence time scale in the denominator of the Richardson number.

ASM = Algebraic stress model.

from Sloan, et al.,

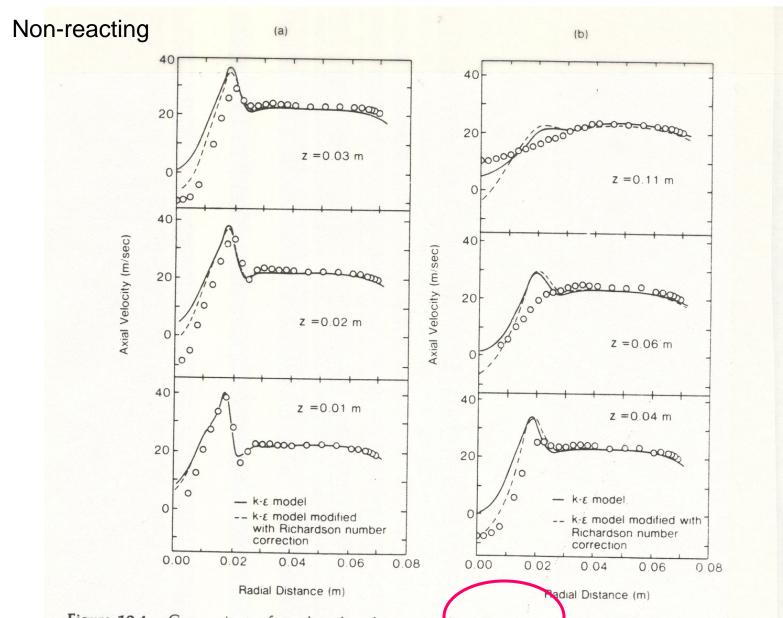


Figure 10.4. Comparison of predicted and measured axial velocity. Data from Vu and Gouldin, 1982; prediction from Sloan, 1984). Conditions were those for a nonreacting coaxial, counterswirl jet. The swirl number of the inner jet was 0.49 and that of the annulus was -0.51.

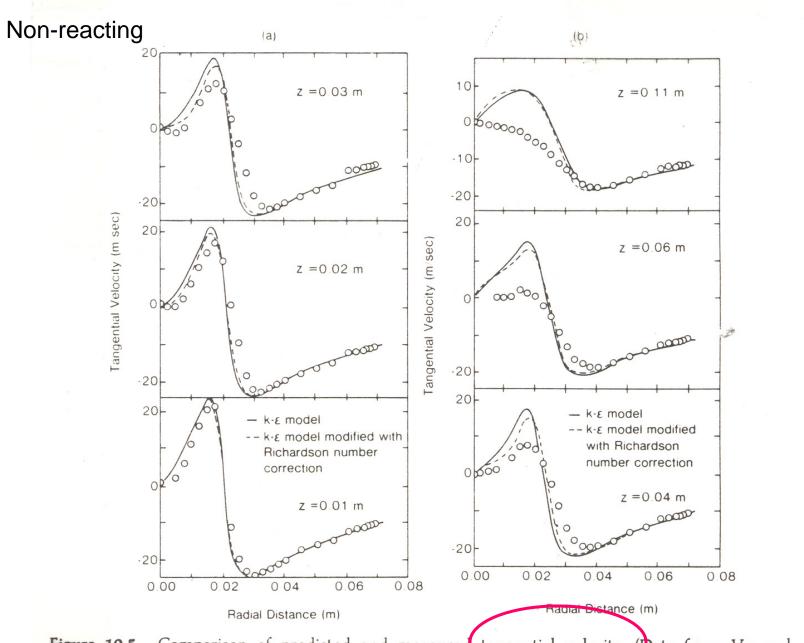


Figure 10.5. Comparison of predicted and measured tangential velocity. Data from Vu and Gouldin, 1982; predictions from Sloan, 1984.) Conditions are those of Figure 10.4 and discussed further in text.

Non-reacting

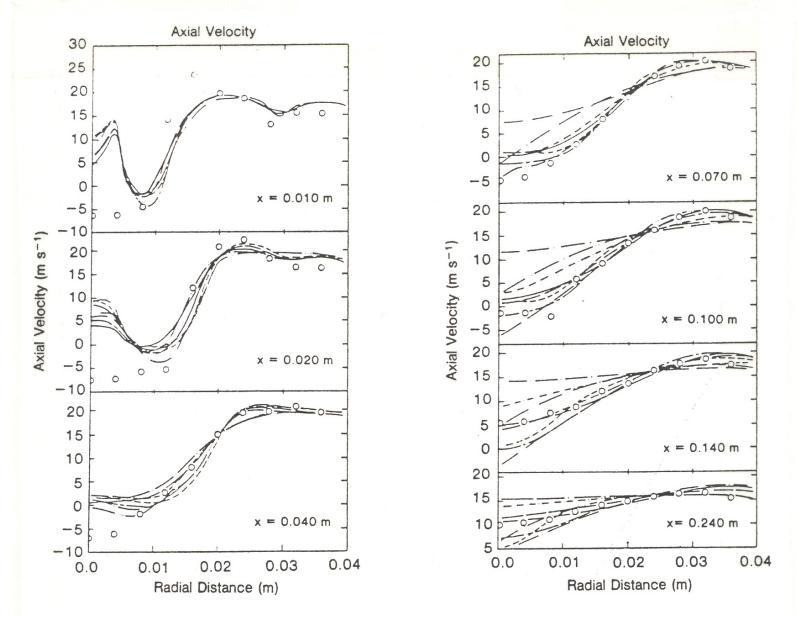
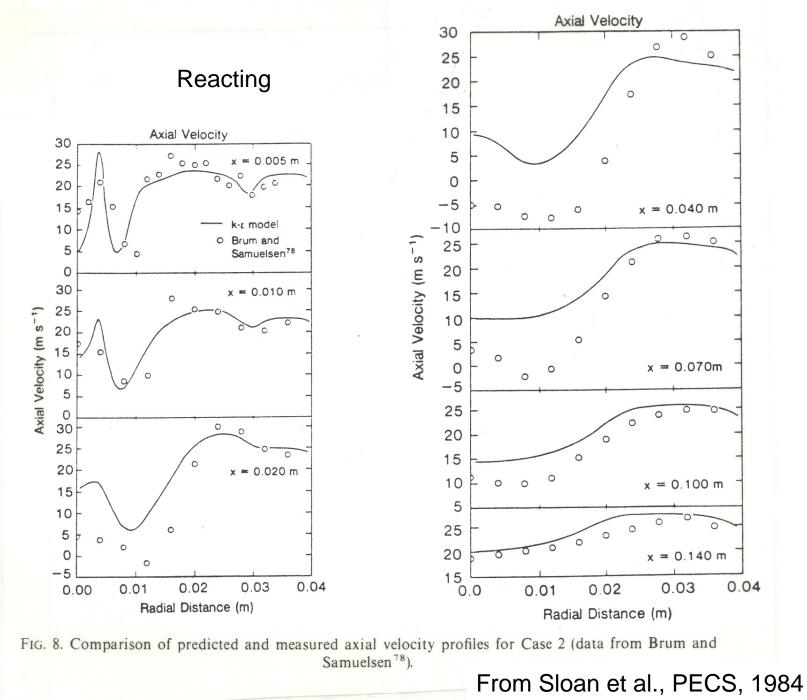


FIG. 5. Comparison of predicted and measured axial velocity profiles for Case 1 (data from Brum and Samuelsen⁷⁸; legend supplied by Table 18).



.