

Soot from HC Gas HACA mechanism - Hydrogen abstraction envelop - Carbon (acetylene) addition • 3 acetylenes make a 20 (mm) benzene ring • 2 more acetylenes make a 2-ring structure (naphthalene) Soot volume fraction on ٠ the order of 5×10^{-7} from Fossil Fuel Combustion, ed. Bartok & Sarofim, Wiley, p 314 (1991). 6

Derived Kinetic Coefficients						
Soot formation	E _f (kJ/mol)	198.9				
	A _f (s ⁻¹)	5.02 × 10 ⁸				
Tar gasification	E _g (kJ/mol)	286.9				
	A _g (s ⁻¹)	9.77 × 10 ¹⁰				
Soot agglomeration	E _a (kJ/mol)	129.9				
	A _a (s ⁻¹)	3.10 × 10 ⁵				

Approaches to Volatiles Combustion

- Detailed elementary step reaction mechanisms
- · Global reactions
 - Hydrocarbons \rightarrow CO, followed by
 - $-\operatorname{CO}\to\operatorname{CO}_2$
- Overall burning rates
 Volatiles → CO₂, H₂O, etc.
- Local chemical equilibrium

	Lamina	r Flame	nð	b	Eb(- DT)	
		Reaction	<i>B</i> ⁻	α-	$E^{-}(=KI_{\alpha})$	
	9.1	$O_2 + H \rightarrow OH + O$	2.00×10^{14}	0.00	70.30	
	9.1"	$OH + O \rightarrow O_2 + H$	1.40×10^{13}	0.00	3.20	
	9.2	$O + H_2 \rightarrow H + OH$	$1.50 \times 10^{\prime}$	2.00	31.60	
	9.2%	$H + OH \rightarrow O + H_2$	6.73×10^{6}	2.00	22.35	
	9.3	$OH + H_2 \rightarrow H + H_2O$	$1.00 \times 10^{\circ}$	1.60	13.80	
	9.3"	$H + H_2O \rightarrow OH + H_2$	$4.62 \times 10^{\circ}$	1.60	77.50	
	9.4	$OH + OH \rightarrow H_2O + O$	1.50×10^{-10}	1.14	0.42	
	9.4"	$H_2O + O \rightarrow OH + OH$	1.49×10^{13}	1.14	/1.14	
	9.5°	$H + O_2 + M \rightarrow OH_2 + M$	2.30×10^{10}	-0.80	0.00	Simplified CH evidetion
ć	9.6	$HO_2 + H \rightarrow OH + OH$	1.50×10^{13}	0.00	4.20	
ţi	9.7	$HO_2 + H \rightarrow H_2 + O_2$	2.50×10^{13}	0.00	2.90	
2	9.8	$HO_2 + H \rightarrow H_2O + O$	3.00×10^{13}	0.00	7.20	
Š	9.9	$HO_2 + OH \rightarrow H_2O + O_2$	6.00 × 10 ⁻⁶	1.60	2.10	
ళ	9.10	$CO + OH \rightarrow CO_2 + H$	4.40 × 10 ⁶	1.50	- 5.10	
쏭	9.10"	$CO_2 + H \rightarrow CO + OH$	4.90 × 10 ⁴	2.00	39.71	
Ť	9.11	$CH_4 + H \rightarrow H_2 + CH_3$	2.20 × 10 ⁻	3.00	30.00	
ä	9.11"	$H_2 + CH_3 \rightarrow CH_4 + H$	8.83 × 10 ⁻	3.00	33.55	
τ	9.12	$CH_4 + OH \rightarrow H_2O + CH_3$	1.60×10^{-1}	2.10	0.00	
0	9.13	$CH_1 + OH \rightarrow CH_2O + H + H$	9.00×10^{14}	0.00	64.80	
u	9.14	$CH_3 + OH \rightarrow CH_2O + H + H$	9.00 × 10 ¹²	0.00	0.00	
sti	9.15	$CH_3 + OH \rightarrow CH_2O + H_2$	6.00×10^{16}	-1.00	0.00	
nq	9.16	$CH_3 + H \rightarrow CH_4$	2.50×10^{13}	0.00	16.70	
E	9.17	$CH_{2}O + OH \rightarrow CHO + H_{2}O$	3.00×10^{13}	0.00	5.00	
ő	9.10	$CH_2O + OH \rightarrow CO + H_2O$	2.00 × 10 ¹⁴	0.00	0.00	
0	D 9.19	$CHO + OH \rightarrow CO + H_2$	1.00×10^{14}	0.00	0.00	
, n	9.20	$CHO + O_1 \rightarrow CO + HO_2$	3.00×10^{12}	0.00	0.00	
	0.22	$CHO + M \rightarrow CO + H + M$	7.10×10^{14}	0.00	70.30	
SS	0.23	$CH_{i} + H \rightarrow CH_{i} + H_{i}$	1.80×10^{14}	0.00	63.00	
Ъ	0.24	$CH_1 + O_2 \rightarrow CO_2 + H + H$	6.50×10^{12}	0.00	6.30	
Ε.	9 9 25	$CH_1 + O_2 \rightarrow CO + OH + H$	6.50×10^{12}	0.00	6.30	
2	\$ 9.26	$CH_1 + H \rightarrow CH + H_2$	4.00×10^{13}	0.00	0.00	
÷.	9.26	$CH + H_{*} \rightarrow CH_{*} + H_{*}$	2.79×10^{13}	0.00	12.61	
	9.27	$CH + O_1 \rightarrow CHO + O$	3.00×10^{13}	0.00	0.00	
	9.28	$CH_3 + OH \rightarrow CH_3 + H_3O$	1.50×10^{13}	0.00	20.93	
	9.29	$CH_2 + OH \rightarrow CH_2O + H$	2.50×10^{13}	0.00	0.00	
	9.30	$CH_1 + OH \rightarrow CH + H_2O$	4.50×10^{13}	0.00	12.56	
	2.2.0	0111 011 0110 111	a on toll	0.00	0.00	

