

Summary of Convective Pass Deposits TABLE 4.7 Summary of Convective Pass Deposits Aerodynamic Туре Temp., K Mechanism Diameter Conventional above 1280 Inertial Impaction >10 µm Upstream Reheater 1170-1370 Inertial Impaction >10 µm Upstream Enamel **Small Particle** 1060-1370 <3 µm Diffusion/ Thermophoresis Downstream All banks Eddy Impaction <10 µm

6. Factors that affect deposit strength · Properties of ash Reactions within deposit deposits - Deposit temperature/Radiant & - Flyash chemistry convective flux Flyash physical properties - Thermal gradient in deposit Condensing - Local gas T and constituents/ash surface composition properties - Residence time Heat transfer surface (seasoning) properties Primary bonding - Tube temperature mechanisms - Material (Stainless, Ferritic/ High T (> 2200°F) Silicate level of oxidation) matrix Surface roughness Low T (< 1800°F) Sulfate matrix

Slagging Deposits

- High concentrations of Fe & Si
- · Generally have a large amount of liquid phase
- · More prevalent with Eastern US coals
 - Abundant pyrite
 - Smaller furnaces
- · Contributing factors
 - Gas flow patterns resulting in particle impaction
 - Localized reducing conditions (sticky particles)
 - A molten captive surface

Transformation Implications to Deposition Conclusions																	
1. The st unders format	The study of mineral matter transformations in combustion systems leads to better understanding of fouling/slagging, heat transfer, and harmful pollutant species formation.																
 Physical transformation of ash during char oxidation usually behaves between the limit of 1 ash particle per coal particle or 1 ash particle per mineral grain. Swelled bituminous coal fragments readily, giving a larger particle size distribution than lignite coals 																	
3. Differe chemie	 Different reaction mechanisms for iron, alkali and alkaline earths, and acid-base chemical groups have been suggested for several combustion regimes 																
 The predictions of fouling tendencies of a certain coal can be done based on experience and based on the general trends discussed previously 																	
 A prior involve 	i predio ed.	ctions a	are n	ot fea	sible	at th	is tir	ne d	ue te	o the	e coi	nplex	pro	cesses			
TABLE	1b. Ash	analysis	and p	operti	es of so	me A	ustral	ian c	oals a	s mir	ned (fe	or defin	ition	of silica	ratio see ec	(n. 2)	
Seam name	Ash (a.d.)	Cl (a.d)	Analysis of ash constituents %											Ash fusion temperature (reducing atmospher		es °C re)	Silica
			SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	CaO	MgO	Na ₂ O	К ₂ О	P ₂ O ₅	Mn ₃ O ₄	SO3	Softening	Hemisphere	Flow	(SR)
Liddell ⁸¹ Munmorah ⁸² Yallourn ⁸⁰ Morwell ⁸³ Leigh Creek ⁸² Collie ⁸²	20.0 22.9 3.9 3.3 23.6 2.6	0.05 0.05 0.13 0.13 0.60 0.07	50.1 63.4 7.80 8.00 47.5 33.8	28.4 24.0 9.00 3.1 22.1 42.9	5.19 4.50 13.2 18.4 6.65 12.37	0.25 1.00 0.28 0.12 1.67 2.42	7.13 1.08 19.3 15.0 6.00 1.96	1.08 0.95 18.0 17.8 1.88 1.88 1.80	0.72 0.94 14.5 9.2 5.57 0.89	0.93 2.83 0.56 N.D 1.07 0.26	1.81 0.06 	0.02 0.06 0.06 0.05	2.65 0.60 25.7 28.1 3.69 0.40	1180 1240 N.D 1300 1100 1500	1380 > 1550 N.D 1380 1200 > 1550	1530 >1550 N.D N.D 1260 >1550	79 91 13 14 77 68
	Wall	et al. ((197	9) Pr	og. E	ner	gy C	Com	b. S	ici.							

Challenges to Describing Impaction/Adhesion

- Particle viscosity calculation based on bulk
 ash composition
- Sticky surface due to vapor condensation
- Sticking of "dry" particles to sticky surface
- Surface temperature/stickiness of deposit
- Deposit sloughing

Ideas

- · Determine bad coals for a certain boiler
- Frequency of sootblowing
- · Areas of boiler prone to corrosion
 - Better steel in those areas?
 - Frequency of shutdown
- · Heat transfer calculations improved
- Impact of additional fuels
 - Biomass, etc.

